全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Periodic Wave Solutions and Solitary Wave Solutions of the (2+1)-Dimensional Korteweg-de-Vries Equatio

DOI: 10.4236/ajcm.2021.114021, PP. 327-339

Keywords: Nonlinear Evolution Equations, Jacobi Elliptic Function, (2+1)-Dimensional KDV, Periodic Wave Solutions, Solitary Wave Solu-tions

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation by applying Jacobi elliptic function expansion method. Abundant types of Jacobi elliptic function solutions are obtained by choosing different coefficients p, q and r in the elliptic equation. Then these solutions are coupled into an auxiliary equation and substituted into the (2+1)-dimensional KDV equation. As a result, a large number of complex Jacobi elliptic function solutions are obtained, and many of them have not been found in other documents. As , some complex solitary solutions are also obtained correspondingly. These solutions that we obtained in this paper will be helpful to understand the physics of the (2+1)-dimensional KDV equation.

References

[1]  Ablowitz, M. and Clarkson, P. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511623998
[2]  Gardner, C.S., Greene, J.M., Kruskal, M.D. and Miura, R.M. (1967) Method for Solving Korteweg-Devries Equation. Physical Review Letters, 19, 1095-1097.
https://doi.org/10.1103/PhysRevLett.19.1095
[3]  Guo, H.D., Xia, T.C. and Hu, B.B. (2020) High-Order Lumps, High-Order Breathers and Hybrid Solutions for an Extended (3+1)-Dimensional Jimbo-Miwa Equation in Fluid Dynamics. Nonlinear Dynamics, 100, 601-614.
https://doi.org/10.1007/s11071-020-05514-9
[4]  Lan, Z.Z. and Guo, B.L. (2020) Nonlinear Waves Behaviors for a Coupled Generalized Nonlinear Schrödinger-Boussinesq System in a Homogeneous Magnetized Plasma. Nonlinear Dynamics, 100, 3771-3784.
https://doi.org/10.1007/s11071-020-05716-1
[5]  Biswas, A., Ekici, M., Sonmezoglu, A. and Belic, M.R. (2019) Solitons in Optical Fiber Bragg Gratings with Dispersive Reflectivity by Extended Trial Function Method. Optik, 182, 88-94.
https://doi.org/10.1016/j.ijleo.2018.12.156
[6]  Seadawy, A.R., Lu, D.C., Nasreen, N. and Nasreen, S. (2019) Structure of Optical Solitons of Resonant Schrodinger Equation with Quadratic Cubic Nonlinearity and Modulation Instability Analysis. Physica A, 534, Article ID: 122155.
https://doi.org/10.1016/j.physa.2019.122155
[7]  Abdoud, M.A., Owyed, S., Abdel-Aty, A., Raffan, B.M. and Abdel-Khalek, S. (2020) Optical Soliton Solutions for a Space-Time Fractional Perturbed Nonlinear Schrödinger Equation Arising in Quantum Physics. Results in Physics, 16, Article ID: 102895.
https://doi.org/10.1016/j.rinp.2019.102895
[8]  Peng, W.Q., Tian, S.F. and Zhang, T.T. (2019) Dynamics of the Soliton Waves, Breather Waves, and Rogue Waves to the Cylindrical Kadomtsev-Petviashvili Equation in Pair-Ion-Electron Plasma. Physics of Fluids, 31, Article ID: 102107.
https://doi.org/10.1063/1.5116231
[9]  Arshad, M., Seadawy, A.R., Lu, D.C. and Wang, J. (2017) Travelling Wave Solutions of Drinfel’d-Sokolov-Wilson, Whitham-Broer-Kaup and (2+1)-Dimensional Broer-Kaup-Kupershmit Equations and Their Applications. Chinese Journal of Physics, 55, 780-797.
https://doi.org/10.1016/j.cjph.2017.02.008
[10]  Seadawy, A.R. (2016) Stability Analysis Solutions for Nonlinear Three-Dimensional Modified Korteweg-de Vries-Zakharov-Kuznetsov Equation in a Magnetized Electron-Positron Plasma. Physica A, 455, 44-51.
https://doi.org/10.1016/j.physa.2016.02.061
[11]  Seadawy, A.R. (2014) Stability Analysis for Zakharov-Kuznetsov Equation of Weakly Nonlinear Ion-Acoustic Waves in a Plasma. Computers & Mathematics with Applications, 67, 172-180.
https://doi.org/10.1016/j.camwa.2013.11.001
[12]  Seadawy, A.R. (2014) Stability Analysis for Two-Dimensional Ion-Acoustic Waves in Quantum Plasmas. Physics of Plasmas, 21, Article ID: 052107-1.
https://doi.org/10.1063/1.4875987
[13]  Yan, C.T. (1996) A Simple Transformation for Nonlinear Waves. Physics Letters A, 224, 77-84.
https://doi.org/10.1016/S0375-9601(96)00770-0
[14]  Liu, J.B. and Yang, K.Q. (2004) The Extended F-Expansion Method and Exact Solutions of Nonlinear PDEs. Chaos, Solitons & Fractals, 22, 111-121.
https://doi.org/10.1016/j.chaos.2003.12.069
[15]  Zhang, S. (2007) Application of Exp-Function Method to a KdV Equation with Variable Coefficients. Physics Letters A, 365, 448-453.
https://doi.org/10.1016/j.physleta.2007.02.004
[16]  Liu, S.K., Fu, Z.T., Liu, S.D. and Zhao, Q. (2001) Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations. Physics Letters A, 289, 69-74.
https://doi.org/10.1016/S0375-9601(01)00580-1
[17]  Fu, Z.T., Liu, S.K., Liu, S.D. and Zhao, Q. (2001) New Jacobi Elliptic Function Expansion and New Periodic Solutions of Nonlinear Wave Equations. Physics Letters A, 290, 72-76.
https://doi.org/10.1016/S0375-9601(01)00644-2
[18]  Shek, E.C.M. and Chow, K.W. (2008) The Discrete Modified Korteweg-de Vries Equation with Non-Vanishing Boundary Conditions: Interactions of Solitons. Chaos, Solitons & Fractals, 36, 296-302.
https://doi.org/10.1016/j.chaos.2006.06.036
[19]  Li, H.M. (2002) Searching for the (3+1)-Dimensional Painleve Integrable Model and Its Solitary Wave Solution. Chinese Physics Letters, 19, 745-747.
https://doi.org/10.1088/0256-307X/19/6/301
[20]  Yomba, E. (2004) On Exact Solutions of the Coupled Klein-Gordon-Schrodinger and the Complex Coupled KdV Equations Using Mapping Method. Chaos, Solitons & Fractals, 21, 209-229.
https://doi.org/10.1016/j.chaos.2003.10.028
[21]  Li, H.M. (2005) New Exact Solutions of Nonlinear Gross-Pitaevskii Equation with Weak Bias Magnetic and Time-Dependent Laser Fields. Chinese Physics, 14, 251-256.
[22]  Wu, G., Han, J., Zhang, W. and Zhang, M. (2007) New Periodic Wave Solutions to Nonlinear Evolution Equations by the Extended Mapping Method. Physica D: Nonlinear Phenomena, 229, 116-122.
https://doi.org/10.1016/j.physd.2007.03.015
[23]  Sirendaoreji and Sun, J. (2003) Auxiliary Equation Method for Solving Nonlinear Partial Differential Equations. Physics Letters A, 309, 387-396.
https://doi.org/10.1016/S0375-9601(03)00196-8
[24]  Sirendaoreji (2004) New Exact Travelling Wave Solutions for the Kawahara and Modified Kawahara Equations. Chaos, Solitons & Fractals, 19, 147-150.
https://doi.org/10.1016/S0960-0779(03)00102-4
[25]  Clarkson, P.A. and Mansfield, E.L. (1995) Symmetry Reductions and Exact-Solutions of Shallow-Water Wave-Equations. Acta Applicandae Mathematica, 39, 245-276.
https://doi.org/10.1007/BF00994636
[26]  Boiti, M., Leon, J.J.P., Manna, M. and Pempinelli, F. (1986) On the Spectral Transform of A Korteweg-Devries Equation in 2 Spatial Dimensions. Inverse Problems, 2, 271-279.
https://doi.org/10.1088/0266-5611/2/3/005
[27]  Lou, S.Y. and Ruan, H.Y. (2001) Revisitation of the Localized Excitations of the (2+1)-Dimensional KdV Equation. Journal of Physics A: Mathematical and General, 34, 305-316.
https://doi.org/10.1088/0305-4470/34/2/307
[28]  Tang, X.Y. and Lou, S.Y. (2002) A Variable Separation Approach to Solve the Integrable and Nonintegrable Models: Coherent Structures of the (2+1)-Dimensional KdV Equation. Communications in Theoretical Physics, 38, 1-8.
https://doi.org/10.1088/0253-6102/38/1/1
[29]  Liu, J.G., Du, J.Q., Zeng, Z.F. and Ai, G.P. (2016) Exact Periodic Cross-Kink Wave Solutions for the New (2+1)-Dimensional KdV Equation in Fluid Flows and Plasma Physics. Chaos, 26, Article ID: 103114.
https://doi.org/10.1063/1.4966020
[30]  Xiang, C. and Wang, H. (2019) Travelling Solitary Wave Solutions to Higher Order Korteweg-de Vries Equation. Open Journal of Applied Sciences, 9, 354-360.
https://doi.org/10.4236/ojapps.2019.95029

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133