全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小胶质细胞在阿尔茨海默病中相关作用的研究进展
Research Progress of Microglia Related Role in Alzheimer’s Disease

DOI: 10.12677/ACM.2021.1112901, PP. 6079-6085

Keywords: 阿尔茨海默病,神经炎症,小胶质细胞,神经免疫调控
Alzheimer’s Disease
, Neuroinflammation, Microglia, Neuroimmunoregulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

阿尔茨海默病(Alzheimer’s disease, AD)是老年痴呆的一种,起病隐匿,是一种进展性神经退行性疾病,也是最常见的痴呆形式,临床表现主要为进行性记忆力丧失、认知功能障碍、精神和行为异常,会逐渐发展至日常生活功能受损,最终生活完全不能自理,对家属的依赖性增加,加大年轻人的负担,同时也加大社会的负担。它与年龄相关,随着当前全球老龄化趋势的增加,其患病人数也随之增加,AD正快速地影响着全人类健康。AD发病机制复杂,近年来,发病机制的研究越来越关注免疫平衡和细胞稳态的调控,人类遗传学数据表明小胶质细胞(microglia, MG)在AD的复杂的发病机制中起着重要作用。小胶质细胞作为脑内主要的免疫细胞,其功能和活化状态是影响AD进展的一个决定性因素。它具有双重特性,能维持脑内微环境的稳态,既可以释放促炎症因子进一步损伤神经元,又可以释放抗炎因子,通过免疫反应提高其吞噬能力,维持着脑环境的稳态。由于小胶质细胞在AD的发生发展以及进行的过程中起着举足轻重的作用,所以对小胶质细胞进行细致的研究还是很有意义的。本文将近年来小胶质细胞在AD发病中的研究进展进行归纳总结,为AD的临床治疗提供新的理论依据。
Alzheimer’s disease (AD) is a kind of senile dementia with insidious onset, is a progressive neurodegenerative disease, is also the most common form of dementia. Its clinical manifestations are mainly progressive memory loss, cognitive dysfunction, mental and behavioral abnormalities. AD will gradually develop to impairment of daily life function. In the end, they are unable to take care of themselves completely, and their dependence on their families increases, which increases the burden of young people and the society at the same time. It is related to age. With the increasing trend of global aging, the number of patients with AD is also increasing. AD is rapidly affecting the health of all mankind. The pathogenesis of AD is complex. In recent years, studies on the pathogenesis have focused more and more on the regulation of immune balance and cell homeostasis. Human genetic data indicate that microglia (MG) plays an important role in the complex pathogenesis of AD. As the main immune cells in the brain, microglia’s function and activation state is a decisive factor affecting the progression of AD. It has dual characteristics, can maintain the homeostasis of the brain microenvironment, can release pro-inflammatory factors to further damage neurons, and can release anti-inflammatory factors, through the immune response to improve its phagocytosis, maintain the homeostasis of the brain. Since microglia play an important role in the development and progression of AD, it is of great significance to conduct a detailed study on microglia. In this paper, the research progress of microglia in the pathogenesis of AD in recent years was summarized to provide a new theoretical basis for the clinical treatment of AD.

References

[1]  Graham, W.V., Bonito-Oliva, A. and Sakmar, T.P. (2017) Update on Alzheimer’s Disease Therapy and Prevention Strategies. Annual Review of Medicine, 68, 413-430.
https://doi.org/10.1146/annurev-med-042915-103753
[2]  Zhao, L., Cheng, X. and Zhong, C. (2019) Implications of Successful Symptomatic Treatment in Parkinson’s Disease for Therapeutic Strategies of Alzheimer’s Disease. ACS Chemical Neuroscience, 10, 922-930.
https://doi.org/10.1021/acschemneuro.8b00450
[3]  丁杜宇, 张巍. 阿尔茨海默病的神经调控治疗[J]. 中国医刊, 2019, 54(5): 16-19.
[4]  Combs, C.K., Karlo, J.C., Kao, S.C. and Landreth, G.E. (2001) β-Amyloid Stimulation of Microglia and Monocytes Results in TNFalpha-Dependent Expression of Inducible Nitric Oxide Synthase and Neuronal Apoptosis. Journal of Neuroscience, 21, 1179-1188.
https://doi.org/10.1523/JNEUROSCI.21-04-01179.2001
[5]  Minagar, A., et al. (2002) The Role of Macrophage/Microglia and Astrocytes in the Pathogenesis of Three Neurologic Disorders: HIV-Associated Dementia, Alzheimer Disease, and Multiple Sclerosis. Journal of the Neurological Sciences, 202, 13-23.
https://doi.org/10.1016/S0022-510X(02)00207-1
[6]  Ginhoux, F., Lim, S., Hoeffel, G., Low, D. and Huber, T. (2013) Origin and Differentiation of Microglia. Frontiers in Cellular Neuroscience, 7, 45.
https://doi.org/10.3389/fncel.2013.00045
[7]  Ma, Y., Wang, J., Wang, Y. and Yang, G.Y. (2017) The Biphasic Function of Microglia in Ischemic Stroke. Progress in Neurobiology, 157, 247-272.
https://doi.org/10.1016/j.pneurobio.2016.01.005
[8]  Lawson, L.J., Perry, V.H., Dri, P. and Gordon, S. (1990) Heterogeneity in the Distribution and Morphology of Microglia in the Normal Adult Mouse Brain. Neuroscience, 39, 151-170.
https://doi.org/10.1016/0306-4522(90)90229-W
[9]  Ginhoux, F., Lim, S., Hoeffel, G., Low, D. and Huber, T. (2013) Origin and Differentiation of Microglia. Frontiers in Cellular Neuroscience, 7, 45.
https://doi.org/10.3389/fncel.2013.00045
[10]  Ransohoff, R.M. (2016) A Polarizing Question: Do M1 and M2 Microglia Exist? Nature Neuroscience, 19, 987-991.
https://doi.org/10.1038/nn.4338
[11]  Tang, Y. and Le, W. (2016) Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular Neurobiology, 53, 1181-1194.
https://doi.org/10.1007/s12035-014-9070-5
[12]  Hirsch, E.C., Hunot, S. and Hartmann, A. (2005) Neuroinflammatory Processes in Parkinson’s Disease. Parkinsonism & Related Disorders, 11, S9-S15.
https://doi.org/10.1016/j.parkreldis.2004.10.013
[13]  Wolf, S.A., Boddeke, H.W. and Kettenmann, H. (2017) Microglia in Physiology and Disease. Annual Review of Physiology, 79, 619-643.
https://doi.org/10.1146/annurev-physiol-022516-034406
[14]  赵方莹, 李礼. 小胶质细胞的发育调控[J]. 中国细胞生物学学报, 2019, 41(10): 27-37.
[15]  Karperien, A., Ahammer, H. and Jelinek, H.F. (2013) Quantitating the Subtleties of Microglial Morphology with Fractal Analysis. Frontiers in Cellular Neuroscience, 7, 3.
https://doi.org/10.3389/fncel.2013.00003
[16]  Leszek, J., Barreto, G.E., G?siorowski, K., Koutsouraki, E., ávila-Rodrigues, M. and Aliev, G. (2016) Inflammatory Mechanisms and Oxidative Stress as Key Factors Responsible for Progression of Neurodegeneration: Role of Brain Innate Immune System. CNS & Neurological Disorders—Drug Targets, 15, 329-336.
https://doi.org/10.2174/1871527315666160202125914
[17]  Hanamsagar, R. and Bilbo, S.D. (2016) Sex Differences in Neurodevelopmental and Neurodegenerative Disorders: Focus on Microglial Function and Neuroinflammation during Development. The Journal of Steroid Biochemistry and Molecular Biology, 160, 127-133.
https://doi.org/10.1016/j.jsbmb.2015.09.039
[18]  Maeda, T., Inagaki, M., Fujita, Y., Kimoto, T., Tanabe-Fujimura, C., Zou, K., Liu, J., Liu, S. and Komano, H. (2016) ATP Increases the Migration of Microglia across the Brain Endothelial Cell Monolayer. Bioscience Reports, 36, e00318.
https://doi.org/10.1042/BSR20160054
[19]  Kettenmann, H., Kirchhoff, F. and Verkhratsky, A. (2013) Microglia: New Roles for the Synaptic Stripper. Neuron, 77, 10-18.
https://doi.org/10.1016/j.neuron.2012.12.023
[20]  Houtman, J., Freitag, K., Gimber, N., Schmoranzer, J., Heppner, F.L. and Jendrach, M. (2019) Beclin1-Driven Autophagy Modulates the Inflammatory Response of Microglia via NLRP3. EMBO Journal, 38, e99430.
https://doi.org/10.15252/embj.201899430
[21]  Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., Finch, C.E., Frautschy, S., Griffin, W.S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I.R., McGeer, P.L., O’Banion, M.K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F.L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Inflammation and Alzheimer’s Disease. Neurobiology of Aging, 21, 383-421.
[22]  Saito, T. and Saido, T.C. (2018) Neuroinflammation in Mouse Models of Alzheimer’s Disease. Clinical and Experimental Neuroimmunology, 9, 211-218.
https://doi.org/10.1111/cen3.12475
[23]  Yuan, P., Condello, C., Keene, C.D., Wang, Y., Bird, T.D., Paul, S.M., Luo, W., Colonna, M., Baddeley, D. and Grutzendler, J. (2016) TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy. Neuron, 90, 724-739.
https://doi.org/10.1016/j.neuron.2016.05.003
[24]  Maccioni, R.B., González, A. andrade, V., Cortés, N., Tapia, J.P. and Guzmán-Martínez, L. (2018) Alzheimer’s Disease in the Perspective of Neuroimmunology. Open Neurology Journal, 12, 50-56.
https://doi.org/10.2174/1874205X01812010050
[25]  Condello, C., Yuan, P., Schain, A. and Grutzendler, J. (2015) Microglia Constitute a Barrier That Prevents Neurotoxic Protofibrillar Aβ42 Hotspots around Plaques. Nature Communications, 6, 6176.
https://doi.org/10.1038/ncomms7176
[26]  Perea, J.R., Bolós, M. and Avila, J. (2020) Microglia in Alzheimer’s Disease in the Context of Tau Pathology. Biomolecules, 10, 1439.
https://doi.org/10.3390/biom10101439
[27]  Kadavath, H., Hofele, R.V., Biernat, J., Kumar, S., Tepper, K., Urlaub, H., Mandelkow, E. and Zweckstetter, M. (2015) Tau Stabilizes Microtubules by Binding at the Interface between Tubulin Heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 112, 7501-7506.
https://doi.org/10.1073/pnas.1504081112
[28]  王丁, 张海波, 宫平, 等. 小胶质细胞在阿尔茨海默病中的作用及机制[J]. 中国新药杂志, 2018, 27(10): 5.
[29]  Jaworski, T., Lechat, B., Demedts, D., Gielis, L., Devijver, H., Borghgraef, P., Duimel, H., Verheyen, F., Kügler, S. and Van Leuven, F. (2011) Dendritic Degeneration, Neurovascular Defects, and Inflammation Precede Neuronal Loss in a Mouse Model for Tau-Mediated Neurodegeneration. The American Journal of Pathology, 179, 2001-2015.
https://doi.org/10.1016/j.ajpath.2011.06.025
[30]  Chung, W.S., Verghese, P.B., Chakraborty, C., Joung, J., Hyman, B.T., Ulrich, J.D., Holtzman, D.M. and Barres, B.A. (2016) Novel Allele-Dependent Role for APOE in Controlling the Rate of Synapse Pruning by Astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 113, 10186-10191.
https://doi.org/10.1073/pnas.1609896113
[31]  Colonna, M. and Butovsky, O. (2017) Microglia Function in the Central Nervous System during Health and Neurodegeneration. Annual Review of Immunology, 35, 441-468.
https://doi.org/10.1146/annurev-immunol-051116-052358
[32]  Paolicelli, R.C., Bolasco, G., Pagani, F., et al. (2011) Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science, 333, 1456-1458.
https://doi.org/10.1126/science.1202529
[33]  Parkhurst, C.N., Yang, G., Ninan, I., et al. (2013) Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell, 155, 1596-1609.
https://doi.org/10.1016/j.cell.2013.11.030
[34]  Wang, W.Y., Yan, M.S., Yu, J.T., et al. (2015) Role of Pro-Inflammatory Cytokines Released from Microglia in Alzheimer’s Disease. Annals of Translational Medicine, 3, 136.
[35]  Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., Herrup, K., Frautschy, S.A., Finsen, B., Brown, G.C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., Petzold, G.C., Town, T., Morgan, D., Shinohara, M.L., Perry, V.H., Holmes, C., Bazan, N.G., Brooks, D.J., Hunot, S., Joseph, B., Deigendesch, N., Garaschuk, O., Boddeke, E., Dinarello, C.A., Breitner, J.C., Cole, G.M., Golenbock, D.T. and Kummer, M.P. (2015) Neuroinflammation in Alzheimer’s Disease. The Lancet Neurology, 14, 388-405.
https://doi.org/10.1016/S1474-4422(15)70016-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133