|
VI型胶原纤维蛋白型先天性肌营养不良的治疗进展
|
Abstract:
VI型胶原纤维蛋白型先天性肌营养不良是一种罕见的肌肉疾病,目前缺乏特异性、针对性的治疗方法,该文从药物治疗、基因治疗、干细胞移植、低蛋白饮食治疗等方面综述了该病治疗方向的研究进展、不足与挑战。
Collagen VI related congenital muscular dystrophy is a rare muscular disease, which lacks specific and targeted therapy, this article reviews the progress, deficiency and challenge of drug therapy, gene therapy, stem cell transplantation and low protein diet therapy.
[1] | B?nnemann, C.G. (2011) The Collagen VI-Related Myopathies: Muscle Meets Its Matrix. Nature Reviews Neurology, 7, 379-390. https://doi.org/10.1038/nrneurol.2011.81 |
[2] | Ge, L., et al. (2019) Congenital Muscular Dystrophies in China. Clinical Genetics, 96, 207-215. |
[3] | Braghetta, P., Ferrari, A., Fabbro, C., et al. (2008) An Enhancer Required for Transcription of the Col6a1 Gene in Muscle Connective Tissue Is Induced by Signals Released from Muscle Cells. Experimental Cell Research, 314, 3508-3518. https://doi.org/10.1016/j.yexcr.2008.08.006 |
[4] | Zou, Y., Zhang, R.Z., Patrizia, S., et al. (2008) Muscle Interstitial Fibroblasts Are the Main Source of Collagen VI Synthesis in Skeletal Muscle: Implications for Congenital Muscular Dystrophy Types Ullrich and Bethlem. Journal of Neuropathology & Experimental Neurology, 67, 144. https://doi.org/10.1097/nen.0b013e3181634ef7 |
[5] | Park, H.J., Sun, M.O., Kim, H.J., et al. (2010) Vitamin C Attenuates ERK Signalling to Inhibit the Regulation of Collagen Production by LL-37 in Human Dermal Fibroblasts. Experimental Dermatology, 19, e258-e264.
https://doi.org/10.1111/j.1600-0625.2010.01070.x |
[6] | Irwin, W.A., Bergamin, N., Sabatelli, P., et al. (2003) Mitochondrial Dysfunction and Apoptosis in Myopathic Mice with Collagen VI Deficiency. Nature Genetics, 35, 367-371. https://doi.org/10.1038/ng1270 |
[7] | Grumati, P., Coletto, L., Sabatelli, P., et al. (2011) Autophagy Is Defective in Collagen VI Muscular Dystrophies, and Its Reactivation Rescues Myofiber Degeneration. Nature Medicine, 16, 1313-1320. https://doi.org/10.1038/nm.2247 |
[8] | Francesca, G., Sibilla, M., Valeria, M., et al. (2014) Cyclosporin A Promotes in Vivo Myogenic Response in Collagen VI-Deficient Myopathic Mice. Frontiers in Aging Neuroscience, 6, 244. https://doi.org/10.3389/fnagi.2014.00244 |
[9] | Merlini, L., Angelin, A., Tiepolo, T., et al. (2008) Cyclosporin A Corrects Mitochondrial Dysfunction and Muscle Apoptosis in Patients with Collagen VI Myopathies. Proceedings of the National Academy of Sciences of the United States of America, 105, 5225-5229. https://doi.org/10.1073/pnas.0800962105 |
[10] | Merlini, L., Sabatelli, P., Armaroli, A., et al. (2011) Cyclosporine A in Ullrich Congenital Muscular Dystrophy: Long-Term Results. Oxidative Medicine and Cellular Longevity, 2011, Article ID: 139194.
https://doi.org/10.1155/2011/139194 |
[11] | Angelin, A., Tiepolo, T., Palma, E., et al. (2009) The Cyclophilin Inhibitor Debio 025 Normalizes Mitochondrial Function, Muscle Apoptosis and Ultrastructural Defects in Col6a1/Myopathic Mice. Neuromuscular Disorders, 19, 630. https://doi.org/10.1016/j.nmd.2009.06.271 |
[12] | Zulian, A., Rizzo, E., Schiavone, M., et al. (2014) NIM811, a Cyclophilin Inhibitor without Immunosuppressive Activity, Is Beneficial in Collagen VI Congenital Muscular Dystrophy Models. Human Molecular Genetics, 23, 5353-5363.
https://doi.org/10.1093/hmg/ddu254 |
[13] | Higuchi, I., et al. (2001) Frameshift Mutation in the Collagen VI Gene Causes Ullrich’s Disease. Annals of Neurology, 50, 261-265. https://doi.org/10.1002/ana.1120 |
[14] | Demir, E., Sabatelli, P., Allamand, V., et al. (2002) Mutations in COL6A3 Cause Severe and Mild Phenotypes of Ullrich Congenital Muscular Dystrophy. The American Journal of Human Genetics, 70, 1446-1458.
https://doi.org/10.1086/340608 |
[15] | Elbashir, S.M., Harborth, J., Lendeckel, W., et al. (2001) Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells. Nature, 411, 494-498. |
[16] | Burnett, J. and Rossi, J. (2012) RNA-Based Therapeutics: Current Progress and Future Prospects. Chemistry & Biology, 19, 60-71. https://doi.org/10.1016/j.chembiol.2011.12.008 |
[17] | Gualandi, F., Manzati, E., Sabatelli, P., et al. (2012) Antisense-Induced Messenger Depletion Corrects a COL6A2 Dominant Mutation in Ullrich Myopathy. Human Gene Therapy, 23, 1313-1318. https://doi.org/10.1089/hum.2012.109 |
[18] | Bolduc, V., Zou, Y., Ko, D., et al. (2014) siRNA-Mediated Allele-Specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy. Molecular Therapy. Nucleic Acids, 3, e147.
https://doi.org/10.1038/mtna.2013.74 |
[19] | Noguchi, S., Ogawa, M., Kawahara, G., et al. (2014) Allele-Specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts. Molecular Therapy Nucleic Acids, 3, e171.
https://doi.org/10.1038/mtna.2014.22 |
[20] | Camacho-Vanegas, O., Bertini, E., Zhang, R.Z., et al. (2001) Ullrich Scleroatonic Muscular Dystrophy Is Caused by Recessive Mutations in Collagen Type VI. Proceedings of the National Academy of Sciences, 98, 7516-7521.
https://doi.org/10.1073/pnas.121027598 |
[21] | Higuchi, I., Shiraishi, T., Hashiguchi, T., et al. (2001) Frameshift Mutation in the Collagen VI Gene Causes Ullrich’s Disease. Annals of Neurology, 50, 261-265. https://doi.org/10.1002/ana.1120 |
[22] | Peat, R.A., Baker, N.L., Jones, K.J., North, K.N. and Lamande, S.R. (2007) Variable Penetrance of COL6A1 Null Mutations: Implications for Prenatal Diagnosis and Genetic Counselling in Ullrich Congenital Muscular Dystrophy Families. Neuromuscular Disorders, 17, 547-557. |
[23] | Giusti, B., Lucarini, L., Pietroni, V., et al. (2010) Dominant and Recessive COL6A1 Mutations in Ullrich Scleroatonic Muscular Dystrophy. Annals of Neurology, 58, 400-410. https://doi.org/10.1002/ana.20586 |
[24] | Lamandé, S.R. and Bateman, J.F. (2017) Collagen VI Disorders: Insights on Form and Function in the Extracellular Matrix and Beyond. Matrix Biology, 71-72, 348-367. |
[25] | Usuki, F., Yamashita, A., Higuchi, I., et al. (2010) Inhibition of Nonsense-Mediated mRNA Decay Rescues the Phenotype in Ullrich’s Disease. Annals of Neurology, 55, 740-744. https://doi.org/10.1002/ana.20107 |
[26] | Usuki, F., Yamashita, A., Kashima, I., et al. (2006) Specific Inhibition of Nonsense-Mediated mRNA Decay Components, SMG-1 or Upf1, Rescues the Phenotype of Ullrich Disease Fibroblasts. Molecular Therapy, 14, 351-360.
https://doi.org/10.1016/j.ymthe.2006.04.011 |
[27] | Usuki, F., Yamashita, A., Shiraishi, T., et al. (2013) Inhibition of SMG-8, a Subunit of SMG-1 Kinase, Ameliorates Nonsense-Mediated mRNA Decay-Exacerbated Mutant Phenotypes without Cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 110, 15037-15042. https://doi.org/10.1073/pnas.1300654110 |
[28] | Urciuolo, A., et al. (2013) Collagen VI Regulates Satellite Cell Self-Renewal and Muscle Regeneration. Nature Communications, 4, Article No. 1964. |
[29] | Alexeev, V., Arita, M., Donahue, A., et al. (2014) Human Adipose-Derived Stem Cell Transplantation as a Potential Therapy for Collagen VI-Related Congenital Muscular Dystrophy. Stem Cell Research & Therapy, 5, 21.
https://doi.org/10.1186/scrt411 |
[30] | Castagnaro, S., Pellegrini, C., Pellegrini, M., et al. (2016) Autophagy Activation in COL6 Myopathic Patients by a Low-Protein-Diet Pilot Trial. Autophagy, 12, 2484-2495. https://doi.org/10.1080/15548627.2016.1231279 |