全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

VI型胶原纤维蛋白型先天性肌营养不良的治疗进展
The Treatment Progress of Collagen VI Related Congenital Muscular Dystrophy

DOI: 10.12677/ACM.2021.1112891, PP. 6013-6017

Keywords: VI型胶原纤维蛋白型先天性肌营养不良,环孢素A,低蛋白饮食
Collagen VI Related Congenital Muscular Dystrophy
, Cyclosporine A, Low-Protein-Diet

Full-Text   Cite this paper   Add to My Lib

Abstract:

VI型胶原纤维蛋白型先天性肌营养不良是一种罕见的肌肉疾病,目前缺乏特异性、针对性的治疗方法,该文从药物治疗、基因治疗、干细胞移植、低蛋白饮食治疗等方面综述了该病治疗方向的研究进展、不足与挑战。
Collagen VI related congenital muscular dystrophy is a rare muscular disease, which lacks specific and targeted therapy, this article reviews the progress, deficiency and challenge of drug therapy, gene therapy, stem cell transplantation and low protein diet therapy.

References

[1]  B?nnemann, C.G. (2011) The Collagen VI-Related Myopathies: Muscle Meets Its Matrix. Nature Reviews Neurology, 7, 379-390.
https://doi.org/10.1038/nrneurol.2011.81
[2]  Ge, L., et al. (2019) Congenital Muscular Dystrophies in China. Clinical Genetics, 96, 207-215.
[3]  Braghetta, P., Ferrari, A., Fabbro, C., et al. (2008) An Enhancer Required for Transcription of the Col6a1 Gene in Muscle Connective Tissue Is Induced by Signals Released from Muscle Cells. Experimental Cell Research, 314, 3508-3518.
https://doi.org/10.1016/j.yexcr.2008.08.006
[4]  Zou, Y., Zhang, R.Z., Patrizia, S., et al. (2008) Muscle Interstitial Fibroblasts Are the Main Source of Collagen VI Synthesis in Skeletal Muscle: Implications for Congenital Muscular Dystrophy Types Ullrich and Bethlem. Journal of Neuropathology & Experimental Neurology, 67, 144.
https://doi.org/10.1097/nen.0b013e3181634ef7
[5]  Park, H.J., Sun, M.O., Kim, H.J., et al. (2010) Vitamin C Attenuates ERK Signalling to Inhibit the Regulation of Collagen Production by LL-37 in Human Dermal Fibroblasts. Experimental Dermatology, 19, e258-e264.
https://doi.org/10.1111/j.1600-0625.2010.01070.x
[6]  Irwin, W.A., Bergamin, N., Sabatelli, P., et al. (2003) Mitochondrial Dysfunction and Apoptosis in Myopathic Mice with Collagen VI Deficiency. Nature Genetics, 35, 367-371.
https://doi.org/10.1038/ng1270
[7]  Grumati, P., Coletto, L., Sabatelli, P., et al. (2011) Autophagy Is Defective in Collagen VI Muscular Dystrophies, and Its Reactivation Rescues Myofiber Degeneration. Nature Medicine, 16, 1313-1320.
https://doi.org/10.1038/nm.2247
[8]  Francesca, G., Sibilla, M., Valeria, M., et al. (2014) Cyclosporin A Promotes in Vivo Myogenic Response in Collagen VI-Deficient Myopathic Mice. Frontiers in Aging Neuroscience, 6, 244.
https://doi.org/10.3389/fnagi.2014.00244
[9]  Merlini, L., Angelin, A., Tiepolo, T., et al. (2008) Cyclosporin A Corrects Mitochondrial Dysfunction and Muscle Apoptosis in Patients with Collagen VI Myopathies. Proceedings of the National Academy of Sciences of the United States of America, 105, 5225-5229.
https://doi.org/10.1073/pnas.0800962105
[10]  Merlini, L., Sabatelli, P., Armaroli, A., et al. (2011) Cyclosporine A in Ullrich Congenital Muscular Dystrophy: Long-Term Results. Oxidative Medicine and Cellular Longevity, 2011, Article ID: 139194.
https://doi.org/10.1155/2011/139194
[11]  Angelin, A., Tiepolo, T., Palma, E., et al. (2009) The Cyclophilin Inhibitor Debio 025 Normalizes Mitochondrial Function, Muscle Apoptosis and Ultrastructural Defects in Col6a1/Myopathic Mice. Neuromuscular Disorders, 19, 630.
https://doi.org/10.1016/j.nmd.2009.06.271
[12]  Zulian, A., Rizzo, E., Schiavone, M., et al. (2014) NIM811, a Cyclophilin Inhibitor without Immunosuppressive Activity, Is Beneficial in Collagen VI Congenital Muscular Dystrophy Models. Human Molecular Genetics, 23, 5353-5363.
https://doi.org/10.1093/hmg/ddu254
[13]  Higuchi, I., et al. (2001) Frameshift Mutation in the Collagen VI Gene Causes Ullrich’s Disease. Annals of Neurology, 50, 261-265.
https://doi.org/10.1002/ana.1120
[14]  Demir, E., Sabatelli, P., Allamand, V., et al. (2002) Mutations in COL6A3 Cause Severe and Mild Phenotypes of Ullrich Congenital Muscular Dystrophy. The American Journal of Human Genetics, 70, 1446-1458.
https://doi.org/10.1086/340608
[15]  Elbashir, S.M., Harborth, J., Lendeckel, W., et al. (2001) Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells. Nature, 411, 494-498.
[16]  Burnett, J. and Rossi, J. (2012) RNA-Based Therapeutics: Current Progress and Future Prospects. Chemistry & Biology, 19, 60-71.
https://doi.org/10.1016/j.chembiol.2011.12.008
[17]  Gualandi, F., Manzati, E., Sabatelli, P., et al. (2012) Antisense-Induced Messenger Depletion Corrects a COL6A2 Dominant Mutation in Ullrich Myopathy. Human Gene Therapy, 23, 1313-1318.
https://doi.org/10.1089/hum.2012.109
[18]  Bolduc, V., Zou, Y., Ko, D., et al. (2014) siRNA-Mediated Allele-Specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy. Molecular Therapy. Nucleic Acids, 3, e147.
https://doi.org/10.1038/mtna.2013.74
[19]  Noguchi, S., Ogawa, M., Kawahara, G., et al. (2014) Allele-Specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts. Molecular Therapy Nucleic Acids, 3, e171.
https://doi.org/10.1038/mtna.2014.22
[20]  Camacho-Vanegas, O., Bertini, E., Zhang, R.Z., et al. (2001) Ullrich Scleroatonic Muscular Dystrophy Is Caused by Recessive Mutations in Collagen Type VI. Proceedings of the National Academy of Sciences, 98, 7516-7521.
https://doi.org/10.1073/pnas.121027598
[21]  Higuchi, I., Shiraishi, T., Hashiguchi, T., et al. (2001) Frameshift Mutation in the Collagen VI Gene Causes Ullrich’s Disease. Annals of Neurology, 50, 261-265.
https://doi.org/10.1002/ana.1120
[22]  Peat, R.A., Baker, N.L., Jones, K.J., North, K.N. and Lamande, S.R. (2007) Variable Penetrance of COL6A1 Null Mutations: Implications for Prenatal Diagnosis and Genetic Counselling in Ullrich Congenital Muscular Dystrophy Families. Neuromuscular Disorders, 17, 547-557.
[23]  Giusti, B., Lucarini, L., Pietroni, V., et al. (2010) Dominant and Recessive COL6A1 Mutations in Ullrich Scleroatonic Muscular Dystrophy. Annals of Neurology, 58, 400-410.
https://doi.org/10.1002/ana.20586
[24]  Lamandé, S.R. and Bateman, J.F. (2017) Collagen VI Disorders: Insights on Form and Function in the Extracellular Matrix and Beyond. Matrix Biology, 71-72, 348-367.
[25]  Usuki, F., Yamashita, A., Higuchi, I., et al. (2010) Inhibition of Nonsense-Mediated mRNA Decay Rescues the Phenotype in Ullrich’s Disease. Annals of Neurology, 55, 740-744.
https://doi.org/10.1002/ana.20107
[26]  Usuki, F., Yamashita, A., Kashima, I., et al. (2006) Specific Inhibition of Nonsense-Mediated mRNA Decay Components, SMG-1 or Upf1, Rescues the Phenotype of Ullrich Disease Fibroblasts. Molecular Therapy, 14, 351-360.
https://doi.org/10.1016/j.ymthe.2006.04.011
[27]  Usuki, F., Yamashita, A., Shiraishi, T., et al. (2013) Inhibition of SMG-8, a Subunit of SMG-1 Kinase, Ameliorates Nonsense-Mediated mRNA Decay-Exacerbated Mutant Phenotypes without Cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 110, 15037-15042.
https://doi.org/10.1073/pnas.1300654110
[28]  Urciuolo, A., et al. (2013) Collagen VI Regulates Satellite Cell Self-Renewal and Muscle Regeneration. Nature Communications, 4, Article No. 1964.
[29]  Alexeev, V., Arita, M., Donahue, A., et al. (2014) Human Adipose-Derived Stem Cell Transplantation as a Potential Therapy for Collagen VI-Related Congenital Muscular Dystrophy. Stem Cell Research & Therapy, 5, 21.
https://doi.org/10.1186/scrt411
[30]  Castagnaro, S., Pellegrini, C., Pellegrini, M., et al. (2016) Autophagy Activation in COL6 Myopathic Patients by a Low-Protein-Diet Pilot Trial. Autophagy, 12, 2484-2495.
https://doi.org/10.1080/15548627.2016.1231279

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133