全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自发辐射对Ho:YAG/SrWO4内腔拉曼激光器输出特性的影响
The Effect of Spontaneous Radiation on the Output Performances of Ho:YAG/SrWO4 Intracavity Raman Lase

DOI: 10.12677/OE.2021.114025, PP. 214-221

Keywords: 自发辐射,主动调Q,拉曼激光器,输出特性
Spontaneous Radiation
, Actively Q-Switched, Raman Laser, Output Performances

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章通过数值模拟研究了自发辐射对Ho:YAG/SrWO4主动调Q内腔拉曼激光器输出特性的影响。在考虑自发辐射的情况下,建立了Ho:YAG/SrWO4主动调Q内腔拉曼激光器的速率方程模型。通过对速率方程进行数值模拟,研究了在不同脉冲重复频率下,自发辐射对拉曼激光器输出特性的影响。结果表明,自发辐射对拉曼激光器的脉冲宽度和峰值功率的影响较为明显。此外,在较低的吸收泵浦功率下,自发辐射对拉曼激光器的平均输出功率和脉冲能量有一定的影响;在较高的吸收泵浦功率下,自发辐射对平均输出功率和脉冲能量几乎没有影响。
In this paper, the effect of spontaneous radiation on the output performances of the Ho:YAG/SrWO4 actively Q-switched intracavity Raman laser was investigated by numerical simulation. The rate equation model of the Ho:YAG/SrWO4 actively Q-switched intracavity Raman laser was developed with consideration of spontaneous radiation. The effect of spontaneous radiation on the output performances of the Raman laser at different pulse repetition frequencies was investigated by numerical simulation of the rate equation. The results show that the effect of spontaneous radiation on the pulse width and peak power of the Raman laser was more obvious. In addition, at lower absorbed pump power, the spontaneous radiation had a certain effect on the average output power and pulse energy of the Raman laser; at higher absorbed pump power, the spontaneous radiation had almost no effect on the average output power and pulse energy.

References

[1]  Serebryakov, V., Bo?ko, é., Kalintsev, A., Kornev, A., Narivonchik, A. and Pavlova, A. (2015) Mid-IR Laser for High- precision Surgery. Journal of Optical Technology, 82, 781.
https://doi.org/10.1364/JOT.82.000781
[2]  Gaimard, Q., Triki, M., Ba, T.N., Cerutti, L., Boissier, G., Teissier, R., Baranov, A., Rouillard, Y. and Vicet, A. (2015) Distributed Feedback GaSb Based Laser Diodes with Buried Grating: A New Field of Single-Frequency Sources from 2 to 3 μm for Gas Sensing Applications. Optics Express, 23, 19118-19128.
https://doi.org/10.1364/OE.23.019118
[3]  Sheintop, U., Sebbag, D., Komm, P., Pearl, S., Marcus, G. and Noach, S. (2019) Two-Wavelength Tm:YLF/KGW External-Cavity Raman Laser at 2197 nm and 2263 nm. Optics Express, 27, 17112-17121.
https://doi.org/10.1364/OE.27.017112
[4]  Casula, R., Penttinen, J.-P., Guina, M., Kemp, A.J. and Hastie, J.E. (2018) Cascaded Crystalline Raman Lasers for Extended Wavelength Coverage: Continuous-Wave, Third-Stokes Operation. Optica, 5, 1406-1413.
https://doi.org/10.1364/OPTICA.5.001406
[5]  Franka, M., Smetanin, S.N., Jelínek, M., Vyhlídal, D., Shukshin, V.E., Ivleva, L.I., Zverev, P.G. and Kube?ek, V. (2019) Efficient Synchronously-Pumped All-Solid-State Raman Laser at 1178 and1227 nm on Stretching and Bending Anionic Group Vibrations in a SrWO4 Crystal with Pulse Shortening Down to 1.4 ps. Optics & Laser Technology, 119, 105660.
https://doi.org/10.1016/j.optlastec.2019.105660
[6]  Li, Z.G., Xiong, Z.J., Moore, N., Lim, G.C., Huang, W.L. and Huang, D.X. (2004) Amplified-Spontaneous-Emission Effects in a Passively Q-Switched Diode-Pumped Nd:YVO4 Laser. Journal of the Optical Society of America, 21, 1479-1485.
https://doi.org/10.1364/JOSAB.21.001479
[7]  Zhang, W., Wang, Y., Lia, J.F., Zhu, Z.J., You, Z.Y. and Tu, C.Y. (2018) Spectroscopic Properties and Rate Equation Model of Er Doped BaLaGa3O7 Crystals. Materials Research Bulletin, 106, 282-287.
https://doi.org/10.1016/j.materresbull.2018.06.011
[8]  Alsous, M.B., Almetaeb, K. and Alnezami, M. (2015) Modeling of Flash-Pumped Passively Q-Switched Solid State Lasers. Journal of Optics, 44, 159-163.
https://doi.org/10.1007/s12596-015-0241-1
[9]  Ding, S.H., Zhangm, X.Y., Wang, Q.P., Chang, J., Wang, S.M. and Liu, Y.R. (2007) Modeling of Actively Q- Switched Intracavity Raman Lasers. IEEE Journal of Quantum Electronics, 43, 722-729.
https://doi.org/10.1109/JQE.2007.901585
[10]  Liu, Y., Sheng, Q., Zhong, K., Shi, W., Ding, X., Qiao, H.Z., Liu, K.F., Ma, H.C., Li, R., Xu, D.G. and Yao, J.Q. (2019) Dual-Wavelength Intracavity Raman Laser Driven by a Coaxially Pumped Dual-Crystal Fundamental Laser. Optics Express, 27, 27797-27806.
https://doi.org/10.1364/OE.27.027797
[11]  Yan, R., Yu, X., Li, X., Chen, D. and Yu, J. (2012) Theoretical and Experimental Investigation of Actively Q-Switched Nd:YAG 946 nm Laser with Considering ETU Effects. Applied Physics B, 108, 591-596.
https://doi.org/10.1007/s00340-012-5110-x
[12]  Chen, Y.F., Lan, Y.P. and Wang, S.C. (2002) Modeling of Di-ode-End-Pumped Q-Switched Solid-State Lasers: Influence of Energy-Transfer Upconversion. Journal of the Optical Society of America B, 19, 1558-1563.
https://doi.org/10.1364/JOSAB.19.001558
[13]  Zhang, X.Y., Zhao, S.Z., Wang, Q.P., Ozygus, B. and Weber, H. (2000) Modeling of Diode-Pumped Actively Q- Switched Lasers. IEEE Journal of Quantum Electronics, 35, 1912-1918.
https://doi.org/10.1109/3.806608
[14]  Pask, H.M. (2003) The Design and Operation of Solid-State Raman Lasers. Progress in Quantum Electronics, 27, 3-56.
https://doi.org/10.1016/S0079-6727(02)00017-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133