|
基于混合数据挖掘的大学生计算机技能需求分析
|
Abstract:
随着人工智能时代的到来,为了满足国家对信息化、专业化人才的培养要求,需要对大学计算机基础课程做出相应的改变。在本文中,我们从学生个人兴趣与社会就业需求两个角度出发,首先采用问卷调查的形式搜集学生对于目前计算机基础课程的态度和看法,通过情感分析技术对学生进行意图挖掘和倾向性分析;再从招聘网站上爬取数十万条与计算机技能相关的文本数据,通过自然语言处理提取有效内容并对计算机技能进行挖掘,得到了不同专业对计算机技能需要掌握的程度。本文以大量数据作为支撑,以数据挖掘与分析的方式为高校计算机基础教学改革提供了参考。
With the advent of the era of artificial intelligence, in order to meet the national requirements for the cultivation of information and professional talents, it is necessary to make corresponding changes to the university computer basic courses. In this paper, we will start from two perspectives: students’ personal interest and social employment needs, first of all, use the form of questionnaire survey to collect students’ attitudes and views on the current computer basic courses, and excavate students’ intention and analyze their tendency through emotion analysis technology; then crawl hundreds of thousands of text data related to computer skills from the recruitment website, through natural language processing to extract effective content and computer skills to get the degree of computer skills need to be mastered by different majors. This paper, supported by a large amount of data, provides reference for the teaching reform of computer foundation in colleges and universities by means of data mining and analysis.
[1] | 于莉. 互联网+ 环境下的高校计算机专业课堂教改现状及建议[J]. 计算机教育, 2020(5): 86-88. |
[2] | 黄凤英, 林龙镔. 信息化背景下的大学计算机基础教学改革探索[J]. 物联网技术, 2020, 10(11): 115-117. |
[3] | 刘静, 王剑, 邢胜龙. 高校就业信息数据统计智能数据挖掘技术的应用[J]. 电子技术与软件工程, 2017(19): 150. |
[4] | 周翠红. 数据挖掘中关联规则的研究及在高校教学质量评估中的应用[D]: [硕士学位论文]. 长沙: 中南大学, 2007. |
[5] | 王硕鹏. 基于数据挖掘的毕业生就业信息管理决策模型研究[J]. 东北电力大学学报, 2019(5): 86-90. |
[6] | 李继巧. 应用导向的高校计算机课程数据挖掘[D]: [硕士学位论文]. 广州: 广州大学, 2018. |
[7] | Kouzis-Loukas, D. 精通Python爬虫框架Scrapy[M]. 北京: 人民邮电出版社, 2018: 10-22. |
[8] | 冯勇, 屈渤浩, 徐红艳, 王嵘冰, 张永刚. 融合TF-IDF和LDA的中文FastText短文本分类方法[J]. 应用科学学报, 2019, 37(3), 378-388. |
[9] | 李娜娜, 刘培玉, 刘文锋, 刘伟童. 基于TextRank的自动摘要优化算法[J]. 计算机应用研究, 2019, 36(4): 1045-1050. |
[10] | 祝永志, 荆静. 基于Python的简单文本情感分析[J]. 通信技术, 2019(7): 1612-1619. |
[11] | Tang, D., Wei, F., Qin, B., Zhou, M. and Liu, T. (2014) Building Large-Scale Twitter-Specific Sentiment Lexicon: A Representation Learning Approach. In: COLING 2014—25th International Conference on Computational Linguistics, Proceedings of COLING 2014: Technical Papers, (Association for Computational Linguistics, ACL Anthology), 172-182. |