|
基于机器视觉的盲孔直径测量
|
Abstract:
针对盲孔直径测量困难、测量精度低、速度慢等问题,本文提出了一种基于机器视觉的盲孔直径测量系统。首先搭建图像采集系统采集盲孔图像,然后利用基于多尺度聚焦测度和广义随机漫步(Generalized Random Walks)的多聚焦图像融合算法进行盲孔图像融合,加深图像边缘,其次对融合后的图像利用全变分(Total variation)模型去除噪声,并提出了一种改进Canny边缘检测算子的方法对图像进行噪声滤除的同时保持了图像边缘,结合形态学方法使得到的盲孔边缘区域更加清晰、连贯,最后利用处理好的盲孔边缘图像进行多次测量求取平均值从而得到盲孔直径。实验结果表明,本文最大相对误差为0.802%,测量精度达到0.001 mm,即数据分布比较集中,证明系统稳定性较好,满足实验精度要求。
Aiming at the problems of difficult blind hole diameter measurement, low measurement accuracy, and slow speed and so on, a blind hole diameter measurement system based on machine vision is proposed in the paper. First, set up an image acquisition system to collect blind hole images, and then use a multi-focus image fusion algorithm based on Multi-Scale Focus Measures and Generalized Random Walks to perform blind hole image fusion and deepen the edge of the image. Then, remove noise for the image using the variational (Total variation) model, and propose an improved Canny edge detection operator method to filter the image noise while maintaining the edge of the image, combined with morphological methods to make the edge area of the blind hole clearer and coherent. Finally, use the processed blind hole edge image to perform multiple measurements to obtain the average value to obtain the blind hole diameter. The experimental results show that the maximum relative error in this paper is 0.802%, and the measurement accuracy reaches 0.001 mm, that is, the data distribution is relatively concentrated, which proves that the system has good stability and meets the requirements of experimental accuracy.
[1] | 王德祥, 张周强, 管声启. 基于机器视觉的齿轮尺寸在线测量系统[J]. 轻工机械, 2021, 39(2): 67-73. |
[2] | 李雪娇, 姜月秋, 李伟帅, 等. 基于机器视觉的大型零件尺寸测量技术研究[J]. 光电技术应用, 2017, 32(2): 44-48+67. |
[3] | 袁懿先, 靳春芬. 小孔的图像处理与圆度误差的评定[J]. 农业机械学报, 1997(3): 134-138. |
[4] | 于苏洋, 闫子龙, 姜春英, 等. 药柱盲孔质量检测算法研究[J]. 固体火箭技术, 2020, 43(3): 370-375. |
[5] | 朱丹丹, 王洪喜, 王建华, 等. 基于图像处理的粗糙边缘盲孔圆度误差测量[J]. 工具技术, 2021, 55(4): 91-95. |
[6] | Tian, J.X., Liu, G.C. and Liu, J.G. (2018) Multi-Focus Image Fusion Based on Edges and Focused Region Extraction. Optik, 171, 611-624. https://doi.org/10.1016/j.ijleo.2018.06.093 |
[7] | Zhang, Y., Bai, X. and Wang, T. (2017) Boundary Finding Based Multi-Focus Image Fusion through Multi-Scale Morphological Focus-Measure. Information Fusion, 35, 81-101. https://doi.org/10.1016/j.inffus.2016.09.006 |
[8] | Shen, R., Cheng, I., Shi, J.B., et al. (2011) Generalized Random Walks for Fusion of Multi-Exposure Images. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Pro-cessing Society, 20, 3634-3646.
https://doi.org/10.1109/TIP.2011.2150235 |
[9] | Hua, K.L., Wang, H.C., Rusdi, A.H. and Jiang, S.Y. (2014) A Novel Multi-Focus Image Fusion Algorithm Based on Random Walks. Journal of Visual Communication and Image Representation, 25, 951-962.
https://doi.org/10.1016/j.jvcir.2014.02.009 |
[10] | 呼亚萍, 孔韦韦, 李萌, 等. 基于边缘检测全变分模型的图像去噪方法[J]. 现代电子技术, 2021, 44(5): 52-56. |
[11] | 郗金洋, 段锦, 郭红芮, 等. 基于非线性扩散方程的改进全变分去噪模型[J]. 长春理工大学学报(自然科学版), 2021, 44(3): 90-95. |
[12] | 朱国远, 任蒙蒙, 朱美玲. 基于TV模型的去噪算法改进[J]. 江苏科技信息, 2019, 36(6): 31-33. |
[13] | 邢雪亮, 甘文波, 蒋朝根. 基于机器视觉的航空铆钉尺寸检测技术[J]. 计量学报, 2020, 41(5): 518-523. |
[14] | 童胜杰, 江明, 焦传佳. 一种改进工件边缘检测方法的研究[J]. 电子测量与仪器学报, 2021, 35(1): 128-134. |