全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于MS-GARCH模型的时间序列聚类
Time Series Clustering with MS-GARCH Mixtures

DOI: 10.12677/SA.2021.106114, PP. 1071-1082

Keywords: 时间序列聚类,有限混合模型,MCMC算法,MS-GARCH模型
Time Series Clustering
, Finite Mixture Model, MCMC Algorithm, MS-GARCH Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

聚类是时间序列数据挖掘的重要任务之一。本文基于有限混合MS-GARCH模型,提出一种时间序列聚类方法。利用贝叶斯马尔科夫链蒙特卡洛模拟方法,克服路径依赖的困难,给出了模型参数的估计。最后,选取23家中国上市公司股票数据进行实证分析,验证了所提方法的有效性。
Clustering is one of the important tasks of time series data mining. In this paper, we propose a novel time series clustering method based on the finite mixture MS-GARCH model. By using Bayesian Markov chain Monte Carlo simulation methods to overcome the difficulty of full path dependence, we estimate the model parameters. Finally, the empirical analysis of stock data of 23 Chinese listed companies verifies the effectiveness of our proposed method.

References

[1]  Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327.
https://doi.org/10.1016/0304-4076(86)90063-1
[2]  Engle, R.F. (1982) Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation. Econometrica, 50, 987-1008.
https://doi.org/10.2307/1912773
[3]  Lamoureux, C.G. and Lastrapes, W.D. (1990) Persistence in Variance, Structural Change, and the GARCH Model. Journal of Business and Economic Statistics, 8, 225-234.
https://doi.org/10.1080/07350015.1990.10509794
[4]  Cai, J.A. (1994) Markov Model of Switching-Regime ARCH. Journal of Business & Economic Statistics, 12, 309-316.
https://doi.org/10.1080/07350015.1994.10524546
[5]  Hamilton, J.D. and Susmel, R. (1994) Autoregressive Conditional Heteroskedasticity and Changes in Regime. Journal of Econometrics, 64, 307-333.
https://doi.org/10.1016/0304-4076(94)90067-1
[6]  Gray, S. (1996) Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process. Journal of Financial Economics, 42, 27-62.
https://doi.org/10.1016/0304-405X(96)00875-6
[7]  Klaassen, F. (2002) Improving GARCH Volatility Forecasts with Regime-Switching GARCH. Empirical Economics, 27, 363-394.
https://doi.org/10.1007/s001810100100
[8]  Marcucci, J. (2005) Forecasting Stock Market Volatility with Regime-Switching GARCH Models. Studies in Nonlinear Dynamics and Econometrics, 9, 1145.
https://doi.org/10.2202/1558-3708.1145
[9]  Haas, M., Mittnik S. and Paolella, M.S. (2004) A New Approach to Markov-Switching GARCH Models. Journal of Financial Econometrics, 2, 493-530.
https://doi.org/10.1093/jjfinec/nbh020
[10]  Ané, T. and Ureche-Rangau, L. (2006) Stock Market Dynamics in a Regime-Switching Asymmetric Power GARCH Model. International Review of Financial Analysis, 15, 109-129.
https://doi.org/10.1016/j.irfa.2005.08.002
[11]  Abramson, A. and Cohen, I. (2007) On the Stationarity of Markov-Switching GARCH Processes. Econometric Theory, 23, 485-500.
https://doi.org/10.1017/S0266466607070211
[12]  Bauwens, L., Preminger, A. and Rombouts, J.V.K. (2010) Theory and Inference for a Markov Switching GARCH Model. Econometrics Journal, 13, 218-244.
https://doi.org/10.1111/j.1368-423X.2009.00307.x
[13]  Henneke, J.S., Rachev, S.T., Fabozzi, F.J. and Nikolov, M. (2011) MCMC-Based Estimation of Markov Switching ARMA-GARCH Models. Applied Economics, 43, 259-271.
https://doi.org/10.1080/00036840802552379
[14]  Liao, T.W. (2005) Clustering of Time Series Data—A Survey. Pattern Recognition, 38, 1857-1874.
https://doi.org/10.1016/j.patcog.2005.01.025
[15]  Aghabozorgi, S., Shirkhorshidi, A.S. and Wah, T.Y. (2015) Time-Series Clustering—A Decade Review. Information Systems, 53, 16-38.
https://doi.org/10.1016/j.is.2015.04.007
[16]  Maharaj, E.A., D’Urso, P. and Caiado, J. (2019) Time Series Clustering and Classification. CRC Press, New York.
https://doi.org/10.1201/9780429058264
[17]  Fraley, C. and Raftery, A.E. (2002) Model-Based Clustering, Discriminant Analysis, and Density Estimation. Journal of the American Statistical Association, 97, 611-631.
https://doi.org/10.1198/016214502760047131
[18]  McLachlan, G.J., Lee, S.X. and Rathnayake, S.I. (2019) Finite Mixture Models. Annual Review of Statistics and Its Application, 6, 355-378.
https://doi.org/10.1146/annurev-statistics-031017-100325
[19]  Bouveyron, C., Celeux, G., Murphy, T.B. and Raftery, A.E. (2019) Model-Based Clustering and Classification for Data Science: with Applications in R. Cambridge University Press, New York.
https://doi.org/10.1017/9781108644181
[20]  Xiong, Y. and Yeung, D.Y. (2004) Time Series Clustering with ARMA Mixtures. Pattern Recognition, 37, 1675-1689.
https://doi.org/10.1016/j.patcog.2003.12.018
[21]  Bauwens, L. and Rombouts, J.V.K. (2007) Bayesian Clustering of Many GARCH Models. Econometric Reviews, 26, 365-386.
https://doi.org/10.1080/07474930701220576
[22]  Fr?hwirth-Schnatter, S. and Kaufmann, S. (2008) Model-Based Clustering of Multiple Time Series. Journal of Business & Economic Statistics, 26, 78-89.
https://doi.org/10.1198/073500107000000106
[23]  Samé, A., Chamroukhi, F., Govaert, G. and Aknin, P. (2011) Model-Based Clustering and Segmentation of Time Series with Changes in Regime. Advances in Data Analysis & Classification, 5, 301-321.
https://doi.org/10.1007/s11634-011-0096-5
[24]  Frühwirth-Schnatter, S. (2011) Panel Data Analysis: A Survey on Model-Based Clustering of Time Series. Advances in Data Analysis and Classification, 5, 251-280.
https://doi.org/10.1007/s11634-011-0100-0
[25]  Kini, B.V. and Sekhar, C.C. (2013) Bayesian Mixture of AR Models for Time Series Clustering. Pattern Analysis and Applications, 16, 179-200.
https://doi.org/10.1007/s10044-011-0247-5
[26]  Costilla, R., Liu, I., Arnold, R. and Fernández, D. (2019) Bayesian Model-Based Clustering for Longitudinal Ordinal Data. Computational Statistics, 34, 1015-1038.
https://doi.org/10.1007/s00180-019-00872-4
[27]  Wang, Y. and Tsay, R.S. (2019) Clustering Multiple Time Series with Structural Breaks. Journal of Time Series Analysis, 40, 182-202.
https://doi.org/10.1111/jtsa.12434
[28]  Bauwens, L. and Lubrano, M. (1998) Bayesian Inference on GARCH Models Using the Gibbs Sampler. The Econometrics Journal, 1, 23-46.
https://doi.org/10.1111/1368-423X.11003
[29]  Aielli, G.P. and Caporin, M. (2013) Fast Clustering of GARCH Processes via Gaussian Mixture Models. Mathematics and Computers in Simulation, 94, 205-222.
https://doi.org/10.1016/j.matcom.2012.09.015
[30]  Sampietro, S. (2010) Bayesian Analysis of Mixture of Autoregressive Components with an Application to Financial Market Volatility. Applied Stochastic Models in Business & Industry, 22, 225-242.
https://doi.org/10.1002/asmb.613

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133