All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

我国COVID-19疫情时空演变特征与趋势研究——基于Spatial Markov Chain和STL时间序列模型
Study on Trend and Characteristics of Spatio-Temporal Evolution of COVID-19 Epidemic in China—Based on Spatial Markov Chain and STL Time Series Model

DOI: 10.12677/HJDM.2022.121002, PP. 8-19

Keywords: COVID-19,时空演变,空间马尔科夫链模型,STL时间序列模型
COVID-19
, Spatio-Temporal Evolution, Spatial Markov Chain Model, STL Time Series Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于2020年1月24日~2021年3月4日省级行政区的COVID-19肺炎现有确诊病例数、累计确诊病例数、治愈数等统计数据,本文采用GIS分析、空间马尔科夫链、STL时间序列模型等方法从时间和空间两个维度分析我国新型冠状病毒肺炎(简称COVID-19)疫情时空演变特征。研究发现:① 全国COVID-19疫情大致分为“大规模快速爆发期、全国严格防控期、全国抑制期、局部复发期、常态化防控期、二次局部复发期、常态化防控期”等7个阶段,绝大部分省份疫情变化特征与全国总体情况相一致,个别省份因局部地区爆发疫情导致疫情变化特征表现出一定差异性。② 湖北春运期间的大规模人口流动是导致疫情在全国范围内快速扩张的主要原因,湖北封城之前14天的百度迁徙规模指数与全国各省市区的累计确诊数(到2月11日)呈现显著正相关。③ 采用马尔科夫链模型分析各省市COVID-19疫情现存确诊数的结果显示,4种疫情风险(高感染、较高感染、较低感染、低感染)保持不变的概率较为稳定且空间分布相对固定,平均向下转移的概率高于向上转移概率,反映了我国COVID-19现存确诊数量下降的趋势。④ 采用STL时间序列趋势分析法分析我国及典型省市的每周现存确诊病例数变化特征及趋势,我国中后期现存确诊数总体呈现平稳趋势,新增确诊病例主要来自境外输入病例,输入性防控将是我国疫情防控重点。
Based on statistical data including the number of active cases, accumulated confirmed cases and cured case of Novel Coronavirus Pneumonia (COVID-2019) in the provincial administrative region from January 24, 2020 to March 4, 2021, this paper uses methods including Geographic Information System (GIS) analysis, Spatial Markov Chain, STL time series model and so on to analyze spatial and temporal evolution characteristics of Novel Coronavirus Pneumonia in China. The study found that: ① The COVID-19 epidemic in China can be roughly divided into seven stages including large-scale rapid outbreak period, national strict prevention and control period, national suppression period, local recurrence period, normalized epidemic prevention period, second local recurrence period and normalized epidemic prevention period. The epidemic change characteristics of most provinces are similar to the nationwide’s situation. Due to the outbreak of the local epidemic, the characteristics of epidemic changes in individual provinces show some differences. ② The high population mobility from Hubei during the Spring Festival transportation period are the main reasons for the rapid expansion of the epidemic. The Baidu Migration Scale Index for the 14 days prior to Hubei closure was significantly correlated with the cumulative diagnosis of provinces (by February 11). ③ The analysis results of the Markov chain model for active cases of COVID-19 in provinces show that the four epidemic risks (high infection, higher infection, lower infection, and low infection) have a relatively stable probability and a relatively fixed spatial distribution, and the average probability of downward transfer is significantly higher than the probability of upward transfer, reflecting the downward trend in the number of active cases of COVID-19 in China. ④ Based on the STL time series trend analysis method, this paper analyzes the change characteristics and trend of weekly con-firmed cases in China and typical provinces. The number of

References

[1]  杨政, 原子霞, 贾祖瑶. 基于迁徙数据估计武汉感染COVID-19的人员数量[J]. 电子科技大学学报, 2020, 49(3): 330-338.
[2]  王霞, 唐三一, 陈勇, 冯晓梅, 肖燕妮, 徐宗本. COVID-19肺炎疫情下武汉及周边地区何时复工?数据驱动的网络模型分析[J]. 中国科学: 数学, 2020, 50(7): 969-978.
[3]  范如国, 王奕博, 罗明, 张应青, 朱超平. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, 49(3): 369-374.
[4]  严阅, 陈瑜, 刘可伋, 罗心悦, 许伯熹, 江渝, 程晋. 基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测[J]. 中国科学: 数学. 2020, 50(3): 385-392.
[5]  王姣娥, 杜德林, 魏冶, 等. 新冠肺炎疫情的空间扩散过程与模式研究[J]. 地理研究, 2020, 39(7): 1450-1462.
[6]  苏理云, 郭雯. 中国各省新型冠状病毒肺炎累计确诊人数的空间聚集及时空格局演变分析[J]. 重庆理工大学学报(自然科学). 2020, 34(4): 51-58+65.
[7]  巫细波, 赖长强, 葛志专. 政府严控期我国地级市COVID-19疫情的时空集聚、演变及自相关效应研究[J]. 地球信息科学学报, 2021, 23(2): 246-258.
[8]  巫细波, 张小英, 葛志专, 赖长强. 我国COVID-19疫情时空演变特征研究——基于314个城市329天面板数据[J]. 地域研究与开发, 2021, 40(1): 1-6.
[9]  刘勇, 杨东阳, 董冠鹏, 张航, 苗长虹. 河南省新冠肺炎疫情时空扩散特征与人口流动风险评估——基于1243例病例报告的分析[J]. 经济地理. 2020, 40(3): 24-32
[10]  刘逸, 李源, 黎卓灵. 韩芳菲. 新冠肺炎疫情在广东省的扩散特征[J]. 热带地理. 2020, 40(3): 367-374.
[11]  陈晓, 黄宇金, 李佳慧, 汪诗洋, 裴韬. COVID-19疫情时空聚集性特征及影响因素分析——以重庆市为例[J]. 地理科学进展. 2020, 39(11): 1798-1808.
[12]  李欣, 周林, 贾涛, 吴昊, 邹宇量, 秦昆. 城市因素对COVID-19疫情的影响——以武汉市为例[J]. 武汉大学学报(信息科学版), 2020, 45(6): 826-835.
[13]  刘郑倩, 叶玉瑶, 张虹鸥, 郭洪旭, 杨骥, 王长建. 珠海市新型冠状病毒肺炎聚集发生的时空特征及传播路径[J]. 热带地理, 2020, 40(3): 422-431.
[14]  卿菁. 特大城市疫情防控机制: 经验、困境与重构——以武汉市新冠肺炎疫情防控为例[J]. 湖北大学学报(哲学社会科学版), 2020, 47(3): 21-32.
[15]  赵宏波, 魏甲晨, 王爽, 刘雅馨, 李光慧, 苗长虹. 大城市新冠肺炎疫情风险评估与精准防控对策——以郑州市为例[J]. 经济地理, 2020, 40(4): 103-109+124.
[16]  汪冉, 张明鑫, 李浩. 河南省交通通达水平对新型冠状病毒传播的影响[J]. 河南理工大学学报(自然科学版), 2020, 39(6): 68-77.
[17]  张宇, 田万利, 吴忠广, 陈宗伟, 王冀. 基于改进SEIR模型的新冠肺炎疫情沿交通线路传播机制[J]. 交通运输工程学报, 2020, 20(3): 150-158.
[18]  徐建华. 现代地理学中的数学方法[M]. 北京: 高等教育出版社, 1996.
[19]  Le Gallo, J. (2004) Space-Time Analysis of GDP Disparities among Euro-pean Regions: A Markov Chains Approach. International Regional Science Review, 27, 138-163.
https://doi.org/10.1177/0160017603262402
[20]  张新林, 仇方道, 王长建, 王佩顺. 长三角城市群工业生态效率空间溢出效应及其影响因素[J]. 长江流域资源与环境, 2019, 28(8): 1791-1800.
[21]  Rey, S.J. and Anselin, L. (2007) PySAL: A Python Library of Spatial Analytical Methods. The Review of Regional Studies, 37, 5-27.
https://doi.org/10.52324/001c.8285
[22]  Cleveland, R., Cleveland, W., McRae, J. and Terpenning, I. (1990) STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, 6, 3-73.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413