全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

应用有限元法研究脊柱生物力学的新进展
New Progress in the Study of Spinal Biomechanics by Finite Element Method

DOI: 10.12677/ACM.2021.1112870, PP. 5877-5882

Keywords: 脊柱,生物力学,有限元分析
Spine
, Biomechanics, Finite Element Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

FEA是一种最初用于工程力学的方法。许多研究表明,它不仅可以用于骨科生物力学研究,而且是计算机辅助脊柱病理模拟最有效的工具。FEM在脊椎疾病和植入物生物力学研究中具有无可比拟的优势。随著工业化进程的不断推进,脊柱损伤病例逐年增多。脊椎损伤因其解剖结构复杂,周围紧邻重要神经、血管,对手术医师来说,是一大挑战。尽管影像学检查可作为治疗的一种有效辅助手段,但它不能预测体内内植物的受力状况和取出时机,有一定的局限性。利用有限元分析方法制定可视化的术前计划,可以很好地弥补这个不足。另外,与传统尸体试验相比,有限元分析具有操作简单、模型获取方便、实验可靠性高等优点。
FEA is a method originally used in engineering mechanics. Many studies have shown that it can not only be used in orthopaedic biomechanical research, but also the most effective tool for computer-aided spinal pathological simulation. FEM has incomparable advantages in the study of spinal diseases and implant biomechanics. With the continuous advancement of industrialization, spinal injury cases are increasing year by year. Spinal injury is a great challenge for surgeons because of its complex anatomical structure and close proximity to important nerves and blood vessels. Although imaging examination can be used as an effective auxiliary means of treatment, it can not predict the stress status and removal time of plants in vivo, which has some limitations. Making visual preoperative plan by finite element analysis can make up for this deficiency. In addition, compared with the traditional cadaver test, finite element analysis has the advantages of simple operation, convenient model acquisition and high experimental reliability.

References

[1]  黄盛佳, 霍洪军, 杨学军, 等. PUMCIId1型青少年特发性脊柱侧凸三维有限元模型的建立[J]. 中国组织工程研究, 2014, 18(26): 4219-4223.
[2]  Salmingo, R., Tadano, S., Fujisaki, K., et al. (2012) Corrective Force Analysis for Scoliosis from Implant Rod Deformation. Clinical Biomechanics (Bristol, Avon), 27, 545-550.
https://doi.org/10.1016/j.clinbiomech.2012.01.004
[3]  Lafon, Y., Steib, J.P. and Skalli, W. (2010) Intraoperative Three Dimensional Correction during in Situ Contouring Surgery by Using a Numerical Model. Spine (Phila Pa 1976), 35, 453-459.
https://doi.org/10.1097/BRS.0b013e3181b8eaca
[4]  Gardner-Morse, M. and Stokes, I.A. (1994) Three-Dimensional Simulations of the Scoliosis Derotation Maneuver with Cotrel-Dubousset Instrumentation. Journal of Biomechanics, 27, 177-181.
https://doi.org/10.1016/0021-9290(94)90206-2
[5]  Liao, Y.C., Feng, C.K., Tsai, M.W., et al. (2007) Shape Modification of the Boston Brace Using a Finite-Element Method with Topology Optimization. Spine (Phila Pa 1976), 32, 3014-3019.
https://doi.org/10.1097/BRS.0b013e31815cda9c
[6]  Viviani, G.R., Ghista, D.N., Lozada, P.J., et al. (1986) Biomechanical Analysis and Simulation of Scoliosis Surgical Correction. Clinical Orthopaedics and Related Research, 208, 40-47.
https://doi.org/10.1097/00003086-198607000-00008
[7]  Kessler, J.I. (2008) Efficacy of a New Computer-Aided Design/Computer-Aided Manufacture Orthosis in the Treatment of Adolescent Idiopathic Scoliosis. Journal of Pediatric Orthopaedics, 17, 207.
https://doi.org/10.1097/BPB.0b013e3283046117
[8]  Gignac, D., Aubin, C.E., Dansereau, J., et al. (2000) Optimization Method for 3D Bracing Correction of Scoliosis Using a Finite Element Model. European Spine Journal, 9, 185-190.
https://doi.org/10.1007/s005860000135
[9]  Zhang, H., Hu, X., Wang, Y., et al. (2013) Use of Finite Element Analysis of a Lenke Type 5 Adolescent Idiopathic Scoliosis Case to Assess Possible Surgical Outcomes. Computer Aided Surgery, 18, 84-92.
https://doi.org/10.3109/10929088.2012.763185
[10]  Sattout, A., Clin, J., Cobetto, N., et al. (2016) Biomechanical Assessment of Providence Nighttime Brace for the Treatment of Adolescent Idiopathic Scoliosis. Spine Deformity, 4, 253-260.
https://doi.org/10.1016/j.jspd.2015.12.004
[11]  Aubin, C., Clin, J. and Rawlinson, J. (2018) Biomechanical Simulations of Costo-Vertebral and Anterior Vertebral Body Tethers for the Fusionless Treatment of Pediatric Scoliosis. Journal of Orthopaedic Research, 36, 254-264.
https://doi.org/10.1002/jor.23648
[12]  Agarwal, A., Jayaswal, A., Goel, V.K., et al. (2017) Patient-Specific Distraction Regimen to Avoid Growth-Rod Failure. Spine, 43, E221-E226.
https://doi.org/10.1097/BRS.0000000000002286
[13]  Weiss, H. and Kleban, A. (2015) Development of CAD/CAM Based Brace Models for the Treatment of Patients with Scoliosis-Classification Based Approach versus Finite Element Modelling. Asian Spine Journal, 9, 661.
https://doi.org/10.4184/asj.2015.9.5.661
[14]  Hachem, B., Aubin, C. and Parent, S. (2017) Porcine Spine Finite Element Model: A Complementary Tool to Experimental Scoliosis Fusionless Instrumentation. European Spine Journal, 26, 1610-1617.
https://doi.org/10.1007/s00586-016-4940-3
[15]  Wang, H., Wang, X., Chen, W., et al. (2014) Biomechanical Comparison of Interspinous Distraction Device and Facet Screw Fixation System on the Motion of Lumbar Spine: A Finite Element Analysis. Chinese Medical Journal, 127, 2078-2084
[16]  Cego?ino, J., Calvo-Echenique, A. and Pérez-del Palomar, A. (2015) Influence of Different Fusion Techniques in Lumbar Spine over the Adjacent Segments: A 3D Finite Element Study. Journal of Orthopaedic Research, 33, 993-1000.
https://doi.org/10.1002/jor.22854
[17]  Little, J.P. and Adam, C.J. (2009) The Effect of Soft Tissue Properties on Spinal Flexibility in Scoliosis: Biomechanical Simulation of Fulcrum Bending. Spine (Phila Pa 1976), 34, E76-E82.
https://doi.org/10.1097/BRS.0b013e31818ad584
[18]  Xu, M., Yang, J., Lieberman, I.H., et al. (2017) Lumbar Spine Finite Element Model for Healthy Subjects: Development and Validation. Computer Methods in Biomechanics and Biomedical Engineering, 20, 1-15.
https://doi.org/10.1080/10255842.2016.1193596
[19]  Vergari, C., Courtois, I., Ebermeyer, E., et al. (2016) Experimental Validation of a Patient-Specific Model of Orthotic Action in Adolescent Idiopathic Scoliosis. European Spine Journal, 25, 3049-3055.
https://doi.org/10.1007/s00586-016-4511-7
[20]  Hadagali, P., Peters, J.R. and Balasubramanian, S. (2018) Morphing the Feature-Based Multi-Blocks of Normative/Healthy Vertebral Geometries to Scoliosis Vertebral Geometries: Development of Personalized Finite Element Models. Computer Methods in Biomechanics and Biomedical Engineering, 21, 297-324.
https://doi.org/10.1080/10255842.2018.1448391
[21]  Pea, R., Dansereau, J., Caouette, C., et al. (2018) Computer-Assisted Design and Finite Element Simulation of Braces for the Treatment of Adolescent Idiopathic Scoliosis Using a Coronal Plane Radiograph and Surface Topography. Clinical Biomechanics, 54, 86-91.
https://doi.org/10.1016/j.clinbiomech.2018.03.005
[22]  Henao, J., Labelle, H., Arnoux, P.J., et al. (2018) Biomechanical Simulation of Stresses and Strains Exerted on the Spinal Cord and Nerves during Scoliosis Correction Maneuvers. Spine Deformity, 6, 12-19.
https://doi.org/10.1016/j.jspd.2017.04.008
[23]  Henao, J., Aubin, C.E., Labelle, H., et al. (2015) Patient-Specific Finite Element Model of the Spine and Spinal Cord to Assess the Neurological Impact of Scoliosis Correction: Preliminary Application on Two Cases with and without Intraoperative Neurological Complications. Computer Methods in Biomechanics and Biomedical Engineering, 19, 901-910.
https://doi.org/10.1080/10255842.2015.1075010
[24]  Agarwal, A., Agarwal, A.K., Jayaswal, A., et al. (2017) Outcomes of Optimal Distraction Forces and Frequencies in Growth Rod Surgery for Different Types of Scoliotic Curves: An in Silico and in Vitro Study. Spine Deformity, 5, 18-26.
https://doi.org/10.1016/j.jspd.2016.09.047
[25]  Xu, M., Yang, J., Lieberman, I., et al. (2017) Finite Element Method-Based Study for Effect of Adult Degenerative Scoliosis on the Spinal Vibration Characteristics. Computers in Biology and Medicine, 84, 53-58.
https://doi.org/10.1016/j.compbiomed.2017.03.018
[26]  Pasha, S., Aubin, C.E., Labelle, H., et al. (2015) The Biomechanical Effects of Spinal Fusion on the Sacral Loading in Adolescent Idiopathic Scoliosis. Clinical Biomechanics, 30, 981-987.
https://doi.org/10.1016/j.clinbiomech.2015.06.019
[27]  Schlager, B., Niemeyer, F., Galbusera, F., et al. (2018) Asymmetrical Intrapleural Pressure Distribution: A Cause for Scoliosis? A Computational Analysis. European Journal of Applied Physiology, 118, 1315-1329.
https://doi.org/10.1007/s00421-018-3864-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133