|
Material Sciences 2021
超薄合金薄膜表面与界面偏析宏观与微观模型的比较
|
Abstract:
本文通过比较基于宏观热力学参数的修正达肯模型(Modified-Darken model)和基于微观原子间相互作用参数的规则溶液断键模型(Regular solution broken bond-type model),将偏析热力学参数与原子间相互作用参数建立了直接的关联。修正达肯模型中的偏析能可表示为原子在表面/界面与体层之间的键能之差,而规则溶液断键模型中不同原子间的键能可通过修正达肯模型中的相互作用系数获得。修正达肯模型可描述从块体到超薄膜表面与界面动态和平衡态的偏析,而规则溶液断键模型则可描述应力作用下薄膜表面与界面平衡态的偏析。在修正达肯模型中引入应力项,可以更完美地描述合金薄膜材料中的偏析。利用修正达肯模型拟合偏析实验数据,获得的热力学参数可以用于检验规则溶液断键模型中原子间相互作用能的可靠性。本文以Cu-Al超薄合金属薄膜为例,分析了应力、薄膜原子间相互作用系数以及薄膜原子与衬底原子间相互作用对偏析的影响。
By comparing the Modified-Darken model with the macroscopically thermodynamic parameters and the regular solution broken bond-type model with the microscopically atomic interaction parameters, the direct correlation between the thermodynamic parameters and the atomic interaction parameters is clearly presented. The segregation energy in the modified Darken model could be expressed by the difference of the atomic band energy between the surface/interface and the adjacent bulk layers, while, the band energy of different atoms in the regular solution broken bond-type model could be obtained from the interaction parameter in the modified Darken model. The modified Darken model is often used for describing both equilibrium and kinetic surface segregation in both bulk and film materials, while, the regular solution broken bond-type model could be used for describing the equilibrium surface and interface segregation in under-stressed thin films. By introducing the additional stressed terms in the modified Darken model, the segregation in an alloy film could be perfectly described. By fitting the measured segregation data using the modified Darken model, the corresponding thermodynamic parameters (segregation energy and interaction parameter) could be obtained and be used for verifying the atomic interaction parameters used in the regular solution broken bond-type model. As an example, the equilibrium surface segregation in ultrathin Cu(111)-5at%Al alloy film is simulated by the two models and the results are compared in terms of stress and interaction parameter of the film atoms, the atomic interaction parameters between the film atoms and the substarte atoms.
[1] | Shirai, T., Shirasawa, T., Hirahara, T., Fukui, N., Takahashi, T. and Hasegawa, S. (2014) Structure Determination of Multilayer Silicene Grown on Ag(111) Films by Electron Diffraction: Evidence for Ag Segregation at the Surface. Phys-ical Review B, 89, Article ID: 241403. https://doi.org/10.1103/PhysRevB.89.241403 |
[2] | Barda, H. and Rabkin, E. (2019) Improving the Thermal Stability of Nickel Thin Films on Sapphire by a Minor Alloying Addition of Gold. Ap-plied Surface Science, 484, 1070-1079. https://doi.org/10.1016/j.apsusc.2019.04.176 |
[3] | Xu, L., Xian, F., Zhang, Y. and Zhang, L. (2019) Surface Segregation of Ag and Its Effect on the Microstructure, Optical Properties and Conduc-tion Type of ZnO Thin Films. Physica B: Condensed Matter, 566, 103-115.
https://doi.org/10.1016/j.physb.2019.05.007 |
[4] | Gibbs, J.W. (1975) Collected Works. Yale University Press, New Haven. |
[5] | Du Plessis, J. (1990) Surface Segregation. Sci-Tech Pub. Ltd., Chichester. |
[6] | Li, X.Y., Lin, M., Chen, X., Huang, C., Li, Y.X. and Wang, J.Y. (2013) Influence of Bulk Concentration on the Discontinuous Transition in Surface Segregation. Advanced Materials Research, 648, 35-42.
https://doi.org/10.4028/www.scientific.net/AMR.648.35 |
[7] | Lin, M., Chen, X., Li, X., Huang, C., Li, Y. and Wang, J. (2014) Local Equilibrium in the Dissolution and Segregation Kinetics of Ag on Cu(111) Surface. Applied Sur-face Science, 297, 130-133.
https://doi.org/10.1016/j.apsusc.2014.01.099 |
[8] | Klinger, L., Wang, J.Y. and Rabkin, E. (2020) The Effect of Stress on Surface and Interface Segregation in Thin Alloy Films on Inert Substrates. Journal of Materials Science, 55, 3629-3635. https://doi.org/10.1007/s10853-019-04207-y |
[9] | Wang, J.Y. (2006) Equilibrium and Kinetic Surface Segregation in Binary Alloy Thin Films. Applied Surface Science, 252, 5347-5350. https://doi.org/10.1016/j.apsusc.2005.12.039 |
[10] | Barda, H. and Rabkin, E. (2020) Metal Hetero-Diffusion along the Metal-Ceramic Interfaces: A Case Study of Au Diffusion along the Ni-Sapphire Interface. Acta Materialia, 186, 242-249.
https://doi.org/10.1016/j.actamat.2019.12.051 |
[11] | Yan, X.L., Lin, M. and Wang, J.Y. (2013) Equilibrium and Ki-netic Surface Segregations in Cu-Sn Thin Films. Applied Physics A, 113, 423-430. https://doi.org/10.1007/s00339-013-7570-1 |
[12] | Nogi, K., Ogino, K. and McLean, W.A. (1986) The Temperature Coefficient of the Surface Tension of Pure Liquid Metals. Metallurgical Transactions B, 17, 163-170. https://doi.org/10.1007/BF02670829 |
[13] | Cahn, J.W. (1961) On Spinodal Decomposition. Acta Metallurgica, 9, 795-801.
https://doi.org/10.1016/0001-6160(61)90182-1 |
[14] | Cahn, J.W. (1962) On Spinodal Decomposition in Cubic Crystals. Acta Metallurgica, 10, 179-183.
https://doi.org/10.1016/0001-6160(62)90114-1 |
[15] | Nicholas, J. (1968) Calculation of Surface Energy as a Func-tion of Orientation for Cubic Crystals. Australian Journal of Physics, 21, 21-34. https://doi.org/10.1071/PH680021 |
[16] | Wang, J.Y., Du Plessis, J., Terblans, J.J. and van Wyk, G.N. (1999) Equi-librium Surface Segregation of Silver to the Low-Index Surfaces of a Copper Single Crystal. Surface and Interface Anal-ysis, 28, 73-76.
https://doi.org/10.1002/(SICI)1096-9918(199908)28:1%3C73::AID-SIA621%3E3.0.CO;2-E |
[17] | Tyson, W.R. and Miller, W.A. (1977) Surface Free Energies of Solid Metals: Estimation from Liquid Surface Tension Measurements. Surface Science, 62, 267-276. https://doi.org/10.1016/0039-6028(77)90442-3 |
[18] | Shi, S., Tanaka, S. and Ko-hyama, M. (2006) First-Principles Study on the Adhesion Nature of the α-Al2O3(0001)/Ni(111) Interface. Modelling and Simulation in Materials Science and Engineering, 14, S21-S28.
https://doi.org/10.1088/0965-0393/14/5/S03 |
[19] | Swaminarayan, S. and Najafabadi, R. (1997) Finite Size Effects on the Thermodynamics of Cu-Ni Alloys: {100} and {110} Thin Films. Acta Materialia, 45, 1715-1724. https://doi.org/10.1016/S1359-6454(96)00234-0 |
[20] | Miedema, A.R. (1980) Cohesion in Alloys—Fundamentals of a Semi-Empirical Model. Physica B + C, 100, 1-28.
https://doi.org/10.1016/0378-4363(80)90054-6 |
[21] | Miedema, A.R. (1975) On the Heat of Formation of Solid Alloys. Journal of the Less Common Metals, 41, 283-298.
https://doi.org/10.1016/0022-5088(75)90034-X |
[22] | Swalin, R.A. (1972) Thermodynamic of Solids. Wiley, New York. |
[23] | Takeuchi, A. and Inoue, A. (2010) Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-Regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys. In-termetallics, 18, 1779-1789. https://doi.org/10.1016/j.intermet.2010.06.003 |