全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

柔性Bi0.5Sb1.5Te3薄膜热电材料及其面外型热电器件的研究
Research on Flexible Bi0.5Sb1.5Te3 Thin-Film Thermoelectric Material and Its Cross-Plane Thermoelectric Device

DOI: 10.12677/MS.2021.1112144, PP. 1244-1252

Keywords: Bi0.5Sb1.5Te3,温度,柔韧性,热电性能,热电器件
Bi0.5Sb1.5Te3
, Temperature, Flexibility, Thermoelectric Property, Thermoelectric Device

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于高性能薄膜热电器件的环境能量收集对自供电智能可穿戴电子设备的发展具有重要意义。本文通过真空镀膜调控衬底沉积温度实现Bi0.5Sb1.5Te3薄膜热电材料性能大幅提升,同时获得一种制备高性能柔性面外型热电器件的方法。采用电子衍射和扫面电镜等对Bi0.5Sb1.5Te3薄膜材料的结晶度及微观结构进行了分析,并测试了材料的电导和塞贝克系数等热电性能。结果表明沉积温度为250℃下制备的Bi0.5Sb1.5Te3薄膜材料具有很高的结晶度且在(0 1 5)晶面择优取向,其功率因子在温度为27℃时,可达4.06 mW/m·K2,是室温制备薄膜功率因子的5.7倍。由于提高温度有利于有序晶面的产生从而实现载流子和迁移率的调控,进而提升了薄膜材料的热电性能。因此制备温度的调节是实现热电材料性能提升的有效途径。此外,通过掩膜技术制备了基于Bi0.5Sb1.5Te3薄膜材料面外型柔性热电器件,该器件在5 K温差下,可获得最大输出功率为7.04 μW,这为柔性自供电可穿戴智能电子器件的发展提供理论与实验基础。
Environmental energy harvesting based on high-performance thin-film thermoelectric devices is of great significance to the development of self-powered intelligent wearable electronic equipment. In this paper, the thermoelectric performance of Bi0.5Sb1.5Te3 thin films is greatly improved by control-ling the deposition temperature of the substrate using vacuum coating and a method for preparing high-performance flexible cross-plane thermoelectric devices is developed. The crystallinity and microstructure of Bi0.5Sb1.5Te3 thin films were analyzed by electron diffraction and scanning elec-tron microscopy, and the thermoelectric properties such as electrical conductivity and Seebeck co-efficient of the material were investigated. The results show that the Bi0.5Sb1.5Te3 thin films prepared at a deposition temperature of 250?C have high crystallinity and preferential orientation on the (0 1 5) crystal plane, and its power factor can reach 4.06 mW/m·K2 at a temperature of 27?C, which is 5.7 times the power factor of the film prepared at room temperature. Since increasing the temperature is conducive to the generation of ordered crystal planes, the regulation of carriers and mobility is realized, thereby improving the thermoelectric properties of the thin-film material. Furthermore, a cross-plane flexible thermoelectric device based on Bi0.5Sb1.5Te3 thin films was prepared by mask technology. The device can obtain a maximum output power of 7.04 μW under a temperature difference of 5 K, which provides theoretical and

References

[1]  籍延宝, 姚鑫锋, 袁涛, 等. 浅谈智慧农业[J]. 上海农业科技, 2019(5): 138-139.
[2]  杨志林. 人工智能与智慧农业[J]. 当代农机, 2021(6): 47-49.
[3]  赵东杰, 叶开勉, 温富道, 等. 智慧农业温室大棚系统研究[J]. 广东蚕业, 2021, 55(6): 29-30.
[4]  Zheng, H.Y., Liu, G.Z., Wu, W.W., et al. (2021) Highly Efficient and Stable Perovskite Solar Cells with Strong Hydrophobic Barrier via Introducing Poly(vinylidene fluoride) Additive. Journal of Energy Chemistry, 57, 593-600.
https://doi.org/10.1016/j.jechem.2020.09.026
[5]  Yoo, J., Seo, G.R., Chua, M., et al. (2021) Efficient Perovskite Solar Cells via Improved Carrier Management. Nature, 590, 587-593.
https://doi.org/10.1038/s41586-021-03285-w
[6]  Jung, S., Lee, J., Heyeon, T., et al. (2014) Fabric-Based Inte-grated Energy Devices for Wearable Activity Monitors. Advanced Materials, 26, 6329-6334.
https://doi.org/10.1002/adma.201402439
[7]  Ha, M., Lim, S., Park, J., et al. (2015) Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins. Advanced Functional Materials, 25, 2840-2840.
https://doi.org/10.1002/adfm.201570129
[8]  Kim, C.S., Yang, H.M., Lee, J., et al. (2018) Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator. ACS Energy Letters, 3, 501-507.
https://doi.org/10.1021/acsenergylett.7b01237
[9]  Tian, R., Liu, Y.Q., Koumotok, K, et al. (2019) Body Heat Powers Future Electronic Skins. Joule, 3, 1399-1403.
https://doi.org/10.1016/j.joule.2019.03.011
[10]  Kong, D.Y., Zhu, W., Guo, Z.P., et al. (2019) High-Performance Flexible Bi2Te3 Films Based Wearable Thermoelectric Generator for Energy Harvesting. Energy, 175, 292-299.
https://doi.org/10.1016/j.energy.2019.03.060
[11]  Tan, M., Shi, X.L., Liu, W.D., et al. (2021) Synergistic Textur-ing and Bi/Sb-Te Antisite Doping Secure High Thermoelectric Performance in Bi0.5Sb1.5Te3-Based Thin Films. Advanced Energy Materials, 11, Article ID: 2102578.
https://doi.org/10.1002/aenm.202102578
[12]  Tan, M., Liu, W.D., Shi, X.L., et al. (2020) In Situ Crys-tal-Amorphous Compositing Inducing Ultrahigh Thermoelectric Performance of P-Type Bi0.5Sb1.5Te3 Hybrid Thin Films. Nano Energy, 78, Article ID: 105379.
https://doi.org/10.1016/j.nanoen.2020.105379
[13]  Feng, J.J., Zhu, W., Zhang, Z.W., et al. (2020) Enhanced Elec-trical Transport Properties via Defect Control for Screen-Printed Bi2Te3 Films over a Wide Temperature Range. ACS Ap-plied Materials & Interfaces, 12, 16630-16638.
https://doi.org/10.1021/acsami.0c01049
[14]  吴瑞峰. 空穴掺杂及温度对CrSi2热电特性的影响[J]. 河南农业大学学报, 2014, 48(5): 619-622.
[15]  Chu, J., Huang, J., Liu, R.H., et al. (2020) Electrode Interface Optimization Ad-vances Conversion Efficiency and Stability of Thermoelectric Devices. Nature Communications, 11, 2723.
https://doi.org/10.1038/s41467-020-16508-x
[16]  赵英浩, 张瑞, 张波萍, 等. Cu1.8?xSbxS热电材料的相结构与电热输运性能[J]. 物理学报, 2021, 70(12): 378-386.
[17]  李辉, 李聪, 刘小标, 等. 有序Bi2Te3纳米柱阵列结构及其热电性能研究[J]. 材料科学, 2020(3): 135-141.
[18]  耿志挺, 蒋昱奇, 刘亦谦. 碲化铋基薄膜热电性能的研究[J]. 材料化学前沿, 2021, 9(2): 59-65.
[19]  王凯扬, 耿志挺, 乔汉森, 等. 碲化铋基热电薄膜的制备及性能研究[J]. 材料化学前沿, 2017, 5(4): 104-109.
[20]  Pan, L., Liu, W.D., Zhang, J.Y., et al. (2020) Synergistic Effect Ap-proaching Record-High Figure of Merit in the Shear Exfoliated N-Type Bi2O2?2xTe2xSe. Nano Energy, 69, Article ID: 104394.
https://doi.org/10.1016/j.nanoen.2019.104394
[21]  Cheng, L., Chen, Z.G., Yang, L., et al. (2013) T-Shaped Bi2Te3-Te Heteronanojunctions: Epitaxial Growth, Structural Modeling, and Thermoelectric Properties. The Journal of Physical Chemistry C, 117, 12458-12464.
https://doi.org/10.1021/jp4041666
[22]  Wu, Y.H., Yu, Y., Zhang, Q., et al. (2019) Liquid-Phase Hot Deformation to Enhance Thermoelectric Performance of N-Type Bismuth-Telluride-Based Solid Solutions. Advanced Science, 6, Arti-cle ID: 1901702.
https://doi.org/10.1002/advs.201901702
[23]  Budnik, A.V., Rogacheva, E.I., Pinegin, V.I., et al. (2013) Effect of Initial Bulk Material Composition on Thermoelectric Properties of Bi2Te3 Thin Films. Journal of Electronic Materials, 42, 1324-1329.
https://doi.org/10.1007/s11664-012-2439-1
[24]  Zou, H., Rowe, D.M. and Min, G. (2001) Growth of P- and N-Type Bismuth Telluride Thin Films by Co-Evaporation. Journal of Crystal Growth, 222, 82-87.
https://doi.org/10.1016/S0022-0248(00)00922-2
[25]  Vieira, E., Figueir, A.J., Pires, A.L., et al. (2019) Enhanced Thermoelectric Properties of Sb2Te3 and Bi2Te3 Films for Flexible Thermal Sensors. Journal of Alloys and Compounds, 774, 1102-1116.
https://doi.org/10.1016/j.jallcom.2018.09.324
[26]  Tan, M., Liu, W.D., Shi, X.L., et al. (2019) Anisotropy Con-trol-Induced Unique Anisotropic Thermoelectric Performance in the N-Type Bi2Te2.7Se0.3 Thin Films. Small Methods, 3, Article ID: 1900582.
https://doi.org/10.1002/smtd.201900582

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133