全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胎盘不同结构间充质干细胞生物学特性研究进展
Progress in Research of Biological Characteristics of Mesenchymal Stem Cells from Different Placental Structures

DOI: 10.12677/ACM.2021.1112853, PP. 5767-5777

Keywords: 间充质干细胞,胎盘,生物学特性
Mesenchymal Stem Cells
, Placenta, Biological Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

近些年来,随着干细胞的基础知识和临床应用经验的不断积累,科研人员发现间充质干细胞具有独特的特性包括较强的增殖能力、多向分化潜能、免疫调节特性以及免疫抑制特性。间充质干细胞获取的来源有很多,例如骨髓、脂肪组织、脐带血和胎盘。其中,研究最多的间充质干细胞的来源为骨髓,但骨髓的采集是一种有创性操作,且随着捐献者年龄的增长能采集到的细胞数量也随之减少。胎盘在产妇生产之后一般会被丢弃,但同时胎盘中存在丰富的干细胞,通过一定的方法可以获得充足的间充质干细胞。胎盘存在多层结构,每种组织来源的间充质干细胞也存在着不同。本文主要对胎盘不同结构来源的间充质干细胞在增殖能力、多向分化潜能、免疫调节特性以及免疫抑制等生物学特性方面进行综述。
In recent years, with the continuous accumulation of basic knowledge and clinical application experience of stem cells, researchers have found that mesenchymal stem cells have unique characteristics, including strong proliferation ability, multidirectional differentiation potential, immunoregulatory and immunosuppressive properties. There are many sources of mesenchymal stem cells, such as bone marrow, adipose tissue, umbilical cord blood and placenta. The most studied source of mesenchymal stem cells is bone marrow, but bone marrow harvesting is an invasive procedure and the number of cells collected decreases as the donor ages. The placenta is generally discarded after childbirth, but at the same time, there are abundant stem cells in the placenta, and sufficient mesenchymal stem cells can be obtained through certain methods. The placenta has multi-layer structure, and each tissue comes from different mesenchymal stem cells. This article reviews biological characteristics of the mesenchymal stem cells from each placental layer, such as proliferative ability, multidirectional differentiation potential, immunoregulation and immunosuppression.

References

[1]  Sung, H.J., Hong, S.C., Yoo, J.H., et al. (2010) Stemness Evaluation of Mesenchymal Stem Cells from Placentas According to Developmental Stage: Comparison to Those from Adult Bone Marrow. Journal of Korean Medical Science, 25, 1418-1426.
https://doi.org/10.3346/jkms.2010.25.10.1418
[2]  Abumaree, M.H., Al Jumah, M.A., Kalionis, B., et al. (2013) Phenotypic and Functional Characterization of Mesenchymal Stem Cells from Chorionic Villi of Human Term Placenta. Stem Cell Reviews and Reports, 9, 16-31.
https://doi.org/10.1007/s12015-012-9385-4
[3]  Kanematsu, D., Shofuda, T., Yamamoto, A., et al. (2011) Isolation and Cellular Properties of Mesenchymal Cells Derived from the Decidua of Human Term Placenta. Differentiation, 82, 77-88.
https://doi.org/10.1016/j.diff.2011.05.010
[4]  Augello, A., Kurth, T.B. and De Bari, C. (2010) Mesenchymal Stem Cells: A Perspective from in Vitro Cultures to in Vivo Migration and Niches. European Cells & Materials, 20, 121-133.
https://doi.org/10.22203/eCM.v020a11
[5]  Gronthos, S., Arthur, A., Bartold, P.M., et al. (2011) A Method to Isolate and Culture Expand Human Dental Pulp Stem Cells. Methods in Molecular Biology, 698, 107-121.
https://doi.org/10.1007/978-1-60761-999-4_9
[6]  Pelagiadis, I., Relakis, K., Kalmanti, L., et al. (2012) CD133 Immunomagnetic Separation: Effectiveness of the Method for CD133(+) Isolation from Umbilical Cord Blood. Cytotherapy, 14, 701-706.
https://doi.org/10.3109/14653249.2012.663487
[7]  Ringden, O., Baygan, A., Remberger, M., et al. (2018) Placenta-Derived Decidua Stromal Cells for Treatment of Severe Acute Graft-versus-Host Disease. Stem Cells Translational Medicine, 7, 325-331.
https://doi.org/10.1002/sctm.17-0167
[8]  Fisher-Shoval, Y., Barhum, Y., Sadan, O., et al. (2012) Transplantation of Placenta-Derived Mesenchymal Stem Cells in the EAE Mouse Model of MS. Journal of Molecular Neuroscience, 48, 176-184.
https://doi.org/10.1007/s12031-012-9805-6
[9]  Selim, A.O., Selim, S.A., Shalaby, S.M., et al. (2016) Neuroprotective Effects of Placenta-Derived Mesenchymal Stromal Cells in a Rat Model of Experimental Autoimmune Encephalomyelitis. Cytotherapy, 18, 1100-1113.
https://doi.org/10.1016/j.jcyt.2016.06.002
[10]  Abomaray, F.M., Al Jumah, M.A., Alsaad, K.O., et al. (2016) Phenotypic and Functional Characterization of Mesenchymal Stem/Multipotent Stromal Cells from Decidua Basalis of Human Term Placenta. Stem Cells International, 2016, Article ID: 5184601.
https://doi.org/10.1155/2016/5184601
[11]  Wu, M., Zhang, R., Zou, Q., et al. (2018) Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from the Human Placenta and Umbilical Cord. Scientific Reports, 8, Article No. 5014.
https://doi.org/10.1038/s41598-018-23396-1
[12]  Kusuma, G.D., Manuelpillai, U., Abumaree, M.H., et al. (2015) Mesenchymal Stem Cells Reside in a Vascular Niche in the Decidua Basalis and Are Absent in Remodelled Spiral Arterioles. Placenta, 36, 312-321.
https://doi.org/10.1016/j.placenta.2014.12.014
[13]  Park, S., Koh, S.E., Hur, C.Y., et al. (2013) Comparison of Human First and Third Trimester Placental Mesenchymal Stem Cell. Cell Biology International, 37, 242-249.
https://doi.org/10.1002/cbin.10032
[14]  Pelekanos, R.A., Sardesai, V.S., Futrega, K., et al. (2016) Isolation and Expansion of Mesenchymal Stem/Stromal Cells Derived from Human Placenta Tissue. Journal of Visualized Experiments, No. 112, 54204.
https://doi.org/10.3791/54204
[15]  Pogozhykh, O., Prokopyuk, V., Figueiredo, C., et al. (2018) Placenta and Placental Derivatives in Regenerative Therapies: Experimental Studies, History, and Prospects. Stem Cells International, 2018, Article ID: 4837930.
https://doi.org/10.1155/2018/4837930
[16]  Araújo, A.B., Furlan, J.M., Salton, G.D., et al. (2018) Isolation of Human Mesenchymal Stem Cells from Amnion, Chorion, Placental Decidua and Umbilical Cord: Comparison of Four Enzymatic Protocols. Biotechnology Letters, 40, 989-998.
https://doi.org/10.1007/s10529-018-2546-z
[17]  Araújo, A.B., Salton, G.D., Furlan, J.M., et al. (2017) Comparison of Human Mesenchymal Stromal Cells from Four Neonatal Tissues: Amniotic Membrane, Chorionic Membrane, Placental Decidua and Umbilical Cord. Cytotherapy, 19, 577-585.
https://doi.org/10.1016/j.jcyt.2017.03.001
[18]  Indumathi, S., Harikrishnan, R., Mishra, R., et al. (2013) Comparison of Feto-Maternal Organ Derived Stem Cells in Facets of Immunophenotype, Proliferation and Differentiation. Tissue Cell, 45, 434-442.
https://doi.org/10.1016/j.tice.2013.07.007
[19]  Mathew, S.A., Rajendran, S., Gupta, P.K., et al. (2013) Modulation of Physical Environment Makes Placental Mesenchymal Stromal Cells Suitable for Therapy. Cell Biology International, 37, 1197-1204.
https://doi.org/10.1002/cbin.10154
[20]  Rus Ciuc?, D., Sori??u, O., Su?man, S., et al. (2011) Isolation and Characterization of Chorionic Mesenchyal Stem Cells from the Placenta. Romanian Journal of Morphology and Embryology, 52, 803-808.
[21]  Dominici, M., Le Blanc, K., Mueller, I., et al. (2006) Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315-317.
https://doi.org/10.1080/14653240600855905
[22]  Dabrowski, F.A., Burdzinska, A., Kulesza, A., et al. (2017) Mesenchymal Stem Cells from Human Amniotic Membrane and Umbilical Cord Can Diminish Immunological Response in an in Vitro Allograft Model. Gynecologic and Obstetric Investigation, 82, 267-275.
https://doi.org/10.1159/000449199
[23]  Magatti, M., Vertua, E., Cargnoni, A., et al. (2018) The Immunomodulatory Properties of Amniotic Cells: The Two Sides of the Coin. Cell Transplantation, 27, 31-44.
https://doi.org/10.1177/0963689717742819
[24]  Insausti, C.L., Blanquer, M., García-Hernández, A.M., et al. (2014) Amniotic Membrane-Derived Stem Cells: Immunomodulatory Properties and Potential Clinical Application. Stem Cells Cloning, 7, 53-63.
https://doi.org/10.2147/SCCAA.S58696
[25]  Manochantr, S., U-pratya, Y., Kheolamai, P., et al. (2013) Immunosuppressive Properties of Mesenchymal Stromal Cells Derived from Amnion, Placenta, Wharton’s Jelly and Umbilical Cord. Internal Medicine Journal, 43, 430-439.
https://doi.org/10.1111/imj.12044
[26]  Fu, Q., Man, X., Yu, M., et al. (2017) Human Decidua Mesenchymal Stem Cells Regulate Decidual Natural Killer Cell Function via Interactions between Collagen and Leukocyt-Associated Immunoglobulin-Like Receptor 1. Molecular Medicine Reports, 16, 2791-2798.
https://doi.org/10.3892/mmr.2017.6921
[27]  Chen, L., Huang, Y.Z., et al. (2018) Comparison of the Proliferation and Differentiation Potential of Human Urine-, Placenta Decidua Basalis-, and Bone Marrow-Derived Stem Cells. Stem Cells International, 2018, Article ID: 7131532.
https://doi.org/10.1155/2018/7131532
[28]  Chen, G., Yue, A., Ruan, Z., et al. (2015) Comparison of Biological Characteristics of Mesenchymal Stem Cells Derived from Maternal-Origin Placenta and Wharton’s Jelly. Stem Cell Research & Therapy, 6, 228.
https://doi.org/10.1186/s13287-015-0219-6
[29]  Abomaray, F.M., Al Jumah, M.A., Kalionis, B., et al. (2015) Human Chorionic Villous Mesenchymal Stem Cells Modify the Functions of Human Dendritic Cells, and Induce an Anti-Inflammatory Phenotype in CD1+ Dendritic Cells. Stem Cell Reviews and Reports, 11, 423-441.
https://doi.org/10.1007/s12015-014-9562-8
[30]  González, P.L., Carvajal, C., Cuenca, J., et al. (2015) Chorion Mesenchymal Stem Cells Show Superior Differentiation, Immunosuppressive, and Angiogenic Potentials in Comparison with Haploidentical Maternal Placental Cells. Stem Cells Translational Medicine, 4, 1109-1121.
https://doi.org/10.5966/sctm.2015-0022
[31]  Wang, J., Zhu, Z., Huang, Y., et al. (2014) The Subtype CD200-Positive, Chorionic Mesenchymal Stem Cells from the Placenta Promote Regeneration of Human Hepatocytes. Biotechnology Letters, 36, 1335-1341.
https://doi.org/10.1007/s10529-014-1468-7
[32]  张睿婷, 韩之波, 王涛, 等. 人胎盘绒毛膜来源间充质干细胞的生物学特性[J]. 中国组织工程研究与临床康复, 2011, 15(10): 1823-1826.
[33]  Vellasamy, S., Sandrasaigaran, P., Vidyadaran, S., et al. (2012) Isolation and Characterisation of Mesenchymal Stem Cells Derived from Human Placenta Tissue. World Journal of Stem Cells, 4, 53-61.
https://doi.org/10.4252/wjsc.v4.i6.53
[34]  白金萍, 李秀英, 李雪, 等. 胎盘间充质干细胞传代后的增殖能力[J]. 中国组织工程研究, 2014, 18(10): 1591-1596.
[35]  Choi, Y.S., Park, Y.B., Ha, C.W., et al. (2017) Different Characteristics of Mesenchymal Stem Cells Isolated from Different Layers of Full Term Placenta. PLoS ONE, 12, e0172642.
https://doi.org/10.1371/journal.pone.0172642
[36]  Lu, G., Zhu, S., Ke, Y., et al. (2013) Transplantation-Potential-Related Biological Properties of Decidua Basalis Mesenchymal Stem Cells from Maternal Human Term Placenta. Cell and Tissue Research, 352, 301-312.
https://doi.org/10.1007/s00441-013-1560-7
[37]  Ventura Ferreira, M.S., Bienert, M., Müller, K., et al. (2018) Comprehensive Characterization of Chorionic Villi-Derived Mesenchymal Stromal Cells from Human Placenta. Stem Cell Research & Therapy, 9, 28.
https://doi.org/10.1186/s13287-017-0757-1
[38]  Silini, A.R., Spoldi, V., De Munari, S., et al. (2018) Immunological and Differentiation Properties of Amniotic Cells Are Retained after Immobilization in Pectin Gel. Cell Transplantation, 27, 70-76.
https://doi.org/10.1177/0963689717738786
[39]  王留娣, 刘威, 谢园园, 等. 三种人胎盘组织来源间充质干细胞的生物学特性[J]. 中国组织工程研究, 2019, 23(9): 1377-1383.
[40]  Lee, H.J., Jung, J., Cho, K.J., et al. (2012) Comparison of in Vitro Hepatogenic Differentiation Potential Between Various Placenta-Derived Stem Cells and Other Adult Stemcells as an Alternative Source of Functional Hepatocytes. Differentiation, 84, 223-231.
https://doi.org/10.1016/j.diff.2012.05.007
[41]  Fanti, M., Gramignoli, R., Serra, M., et al. (2017) Differentiation of Amniotic Epithelial Cells into Various Liver Cell Types and Potential Therapeutic Applications. Placenta, 59, 139-145.
https://doi.org/10.1016/j.placenta.2017.03.020
[42]  Miao, Z., Sun, H. and Xue, Y. (2017) Isolation and Characterization of Human Chorionic Membranes Mesenchymal Stem Cells and Their Neural Differentiation. Tissue Engineering and Regenerative Medicine, 14, 143-151.
https://doi.org/10.1007/s13770-017-0025-6
[43]  Abumaree, M.H., Al Jumah, M.A., Kalionis, B., et al. (2013) Human Placental Mesenchymal Stem Cells (pMSCs) Play a Role as Immune Suppressive Cells by Shifting Macrophage Differentiation from Inflammatory M1 to Anti-Inflammatory M2 Macrophages. Stem Cell Reviews and Reports, 9, 620-641.
https://doi.org/10.1007/s12015-013-9455-2
[44]  Kim, S.H., Jung, J., Cho, K.J., et al. (2018) Immunomodulatory Effects of Placenta-Derived Mesenchymal Stem Cells on T Cells by Regulation of FoxP3 Expression. International Journal of Stem Cells, 11, 196-204.
https://doi.org/10.15283/ijsc18031
[45]  Kang, J.W., Koo, H.C., Hwang, S.Y., et al. (2012) Immunomodulatory Effects of Human Amniotic Membrane-Derived Mesenchymal Stem Cells. Journal of Veterinary Science, 13, 23-31.
https://doi.org/10.4142/jvs.2012.13.1.23
[46]  Silini, A.R., Magatti, M., Cargnoni, A., et al. (2017) Is Immune Modulation the Mechanism Underlying the Beneficial Effects of Amniotic Cells and Their Derivatives in Regenerative Medicine? Cell Transplantation, 26, 531-539.
https://doi.org/10.3727/096368916X693699
[47]  Shi, Y., Su, J., Roberts, A.I., et al. (2012) How Mesenchymal Stem Cells Interact with Tissue Immune Responses. Trends in Immunology, 33, 136-143.
https://doi.org/10.1016/j.it.2011.11.004
[48]  Yamahara, K., Harada, K., Ohshima, M., et al. (2014) Comparison of Angiogenic, Cytoprotective, and Immunosuppressive Properties of Human Amnion- and Chorion-Derived Mesenchymal Stem Cells. PLoS ONE, 9, e88319.
https://doi.org/10.1371/journal.pone.0088319
[49]  Abumaree, M.H., Al Harthy, S., Al Subayyil, A.M., et al. (2019) Decidua Basalis Mesenchymal Stem Cells Favor Inflammatory M1 Macrophage Differentiation in Vitro. Cells, 8, pii: E173.
https://doi.org/10.3390/cells8020173
[50]  Abumaree, M.H., Bahattab, E., Alsadoun, A., et al. (2018) Characterization of the Interaction between Human Decidua Parietalis Mesenchymal Stem/Stromal Cells and Natural Killer Cells. Stem Cell Research & Therapy, 9, 102.
https://doi.org/10.1186/s13287-018-0844-y
[51]  Zhu, Y., Yang, Y., Zhang, Y., et al. (2014) Placental Mesenchymal Stem Cells of Fetal and Maternal Origins Demonstrate Different Therapeutic Potentials. Stem Cell Research & Therapy, 5, 48.
https://doi.org/10.1186/scrt436
[52]  Parolini, O., Souza-Moreira, L., O’Valle, F., et al. (2014) Therapeutic Effect of Human Amniotic Membrane-Derived Cells on Experimental Arthritis and Other Inflammatory Disorders. Arthritis & Rheumatology, 66, 327-339.
https://doi.org/10.1002/art.38206
[53]  Lu, G., Zhu, S., Ke, Y., et al. (2013) Transplantation-Potential-Related Biological Properties of Decidua Basalis Mesenchymal Stem Cells from Maternal Human Term Placenta. Cell and Tissue Research, 352, 301-312.
https://doi.org/10.1007/s00441-013-1560-7
[54]  Sadeghi, B., Heshmati, Y., Khoein, B., et al. (2015) Xeno-Immunosuppressive Properties of Human Decidual Stromal Cells in Mouse Models of Alloreactivity in Vitro and in Vivo. Cytotherapy, 17, 1732-1745.
https://doi.org/10.1016/j.jcyt.2015.09.001
[55]  Kaplan, J.M., Youd, M.E. and Lodie, T.A. (2011) Immunomodulatory Activity of Mesenchymal Stem Cells. Current Stem Cell Research & Therapy, 6, 297-316.
https://doi.org/10.2174/157488811797904353
[56]  Alshabibi, M.A., Al Huqail, A.J., Khatlani, T., et al. (2017) Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation. Stem Cells and Development, 26, 1355-1373.
https://doi.org/10.1089/scd.2017.0096
[57]  Alshabibi, M.A., Khatlani, T., Abomaray, F.M., et al. (2018) Human Decidua Basalis Mesenchymal Stem/Stromal Cells Protect Endothelial Cell Functions from Oxidative Stress Induced by Hydrogen Peroxide and Monocytes. Stem Cell Research & Therapy, 9, 275.
https://doi.org/10.1186/s13287-018-1021-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133