全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于图模型与定序编码的手指静脉识别方法
Weighted Graph and Gabor Ordinal Measure Based Description for Finger-Vein Network

DOI: 10.12677/CSA.2021.1112298, PP. 2945-2952

Keywords: 手指静脉识别,加权图,定序编码
Finger-Vein Recognition
, Weighted Graph, Gabor Ordinal Measure

Full-Text   Cite this paper   Add to My Lib

Abstract:

手指静脉的网络结构是指静脉区分性的来源,但获得可靠的手指静脉网络结构描述一直是个难题。为此,本文提出一种基于图模型与定序编码的手指静脉网络特征描述方法。对于一幅手指静脉图像,首先通过划分图块来获得图的节点集,其次利用三角剖分法获得图的边集,边的权重由边所连接的节点特征来决定。经过上述操作,一幅手指静脉图像可构建一个加权图,通过度量加权图的邻接矩阵相似度来实现手指静脉识别。本文中研究影响识别结果的几个因素,并通过实验证明了该方法的有效性。
The network structure of finger veins is the source of distinguishment, but it has always been a difficult problem to obtain a reliable description of the vein network structure. So, in this paper, we propose a finger vein network feature description method based on graph model and Gabor ordinal measure. For a finger vein image, this paper first obtains the node-set of the graph by block division, and then uses the triangulation method to obtain the edge-set of the graph. The weights of the edges are determined by the features of the nodes connected by the edges. After the above operations, a finger-vein image could be represented by a weighted graph, and the adjacency matrix of this weighted graph was used for fingervein recognition. In this paper, several factors affecting the recognition results are studied, and the effectiveness of the method is proved through experiments.

References

[1]  Yang, J.F. and Shi, Y.H. (2012) Finger-Vein ROI Localization and Vein Ridge Enhancement. Pattern Recognition Let-ters, 33, 1569-1579.
https://doi.org/10.1016/j.patrec.2012.04.018
[2]  Ojala, T., Pietikainen, M. and Harwood, D. (1996) A Comparative Study of Texture Measures with Classification Based on Featured Distributions. Pattern Recogni-tion, 29, 51-59.
https://doi.org/10.1016/0031-3203(95)00067-4
[3]  Ojala, T., Pietikainen, M. and Maenpaa, T. (2002) Multi-Resolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24, 971-987.
https://doi.org/10.1109/TPAMI.2002.1017623
[4]  Zhang, L., Zhang, L., Zhang, D., et al. (2010) Online Fin-ger-Knuckle-Print Verification for Personal Authentication. Pattern Recognition, 43, 2560-2571.
https://doi.org/10.1016/j.patcog.2010.01.020
[5]  Sun, Z.N. and Tan, T.N. (2009) Ordinal Measures for Iris Recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence, 31, 2211-2226.
https://doi.org/10.1109/TPAMI.2008.240
[6]  Chai, Z.H., Sun, Z.N., Vazquez, H., et al. (2013) Gabor Ordinal Measures for Face Recognition. IEEE Transactions on Information Forensics & Security, 9, 14-26.
https://doi.org/10.1109/TIFS.2013.2290064
[7]  West, D. 图论导引[M]. 李建中, 骆吉洲, 译. 北京: 机械工业出版社, 2006.
[8]  Luo, B., Wilson, R.C. and Hancock, E.R. (2003) Spectral Embedding of Graphs. Pattern Recog-nition, 36, 2213-2230.
https://doi.org/10.1016/S0031-3203(03)00084-0
[9]  汤进, 翟素兰, 罗斌. 基于加权关系图谱特征的图像检索[J]. 计算机工程, 2007, 33(24): 19-21.
[10]  汤进. 基于图理论的图像描述与检索方法研究[D]: [博士学位论文]. 合肥: 安徽大学, 2007.
[11]  Choi, G., Lim, C.G. and Choi, H.J. (2017) A Center-Biased Graph Learning Algorithm for Image Classification. In: Choi, H., Peng, W.C. and Sakurai, Y., Eds., IEEE International Conference on Big Data and Smart Computing, Jeju Island, 13-16 February 2017, 324-327.
[12]  Bashier, H.K., Abusham, E.A. and Khalid, F. (2012) Face Detection Based on Graph Structure and Neural Networks. Trends in Applied Sciences Research, 7, 75-79.
https://doi.org/10.3923/tasr.2012.683.691
[13]  Abusham, E.A. and Bashir, H.K. (2011) Face Recognition Using Local Graph Structure (LGS). In: Jacko, J.A., Ed., International Conference on Human-Computer Interaction, Orlando, 9-14 July 2011, 169-175.
https://doi.org/10.1007/978-3-642-21605-3_19
[14]  Dong, S., Yang, J., Chen, Y., et al. (2015) Finger Vein Recognition Based on Multi-Orientation Weighted Symmetric Local Graph Structure. Ksii Transactions on Internet & Information Systems, 9, 4126-4142.
https://doi.org/10.3837/tiis.2015.10.020
[15]  Horadam, K.J., Davis, S.A., Arakala, A., et al. (2012) Fingerprints as Spatial Graphs: Nodes and Edges. In: Bradley, A.P. and Jackway, P.T., Eds., International Conference on Digital Image Computing Techniques and Applications, Fremantle, 3-5 December 2012, 400-405.
https://doi.org/10.1109/DICTA.2011.74
[16]  Lajevardi, S.M., Arakala, A., Davis, S.A., et al. (2013) Retina Veri-fication System Based on Biometric Graph Matching. IEEE Transactions on Image Processing, 22, 3625-3635.
https://doi.org/10.1109/TIP.2013.2266257
[17]  Arakala, A., Davis, S.A., Hao, H., et al. (2017) Value of Graph Topology in Vascular Biometrics. IET Biometrics, 6, 117-125.
https://doi.org/10.1049/iet-bmt.2016.0073
[18]  La-jevardi, S.M. (2014) Hand Vein Authentication Using Biometric Graph Matching. IET Biometrics, 3, 302-313.
https://doi.org/10.1049/iet-bmt.2013.0086
[19]  Sun, Z., Tan, T., Wang, Y., et al. (2005) Ordinal Palmprint Repre-sention for Personal Identification. In: Agrawal, M., et al., Eds., IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 20-25 June 2005, 279-284.
[20]  Liao, S., Lei, Z., Zhu, X., et al. (2006) Face Recognition Using Ordinal Features. In: Zhang, D. and Jain, A.K., Eds., Advances in Biometrics, Springer, Berlin, 40-46.
https://doi.org/10.1007/11608288_6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133