|
基于方向性偏好的个性化序列推荐模型
|
Abstract:
[1] | 马宏伟, 张光卫, 李鹏. 协同过滤推荐算法综述[J]. 小型微型计算机系统, 2009, 30(7): 1282-1288. |
[2] | Folajimi, Y. and Olowofoyeku, K. (2014) Web Items Recommendation Using Hybridized Content-Based and Collaborative Filtering Techniques. Jour-nal of Computer Science and Its Application, 21, 64-72. |
[3] | Liang, Z., Peng, L.-F. and Phelan, C.A. (2014) Novel Recommendation of User-Based Collaborative Filtering. Journal of Digital Information Management, 12, 165-175. |
[4] | Zhou, T.-X., Jiang, Z.-B., Liu, X.-J., et al. (2020) Research on the Long-Term and Short-Term Forecasts of Navigable River’s Water-Level Fluctuation Based on the Adaptive Multilayer Perceptron. Journal of Hydrology, 591, Article ID: 125285. https://doi.org/10.1016/j.jhydrol.2020.125285 |
[5] | 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. |
[6] | Yuan, W.-H., Hong, W., Yu, X.-M., et al. (2020) Attention-Based Context-Aware Sequential Recommenda-tion Model. Information Sciences, 510, 122-134. https://doi.org/10.1016/j.ins.2019.09.007 |
[7] | 宗春梅, 张月琴, 赵青杉. 等. 可视化支持下CNN在个性化推荐算法中的应用[J]. 计算机系统应用, 2020, 29(6): 204-210. |
[8] | Wafa, S. and Byun, Y.C. (2020) A Context-Aware Location Recommendation System for Tourists Using Hierarchical LSTM Model. Sustainability, 12, Article No. 4107. https://doi.org/10.3390/su12104107 |
[9] | 沈学利, 杜志伟. 融合自注意力机制与长短期偏好的序列推荐模型[J]. 计算机应用研究, 2020, 38(5): 1371-1375+1380. |
[10] | Wang, S.-J., Hu, L. and Wang, Y. (2019) Sequential Recommender Systems: Challenges, Progress and Prospects. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao (China), 10-16 August 2019, 6332-6338. https://doi.org/10.24963/ijcai.2019/883 |
[11] | Wu, C.-Y., Amr, A., Alex, B., Smola, A.J. and Jing, H. (2017) Recurrent Recommender Networks. Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, 6-10 February 2017, 495-503.
https://doi.org/10.1145/3018661.3018689 |
[12] | Yang, Y., Jang, H.J. and Kim, B. (2020) A Hybrid Recommender System for Sequential Recommendation: Combining Similarity Models with Markov Chains. IEEE Access, 8, 190136-190146.
https://doi.org/10.1109/ACCESS.2020.3027380 |
[13] | 夏瑜潞. 循环神经网络的发展综述[J]. 电脑知识与技术, 2019, 15(21): 182-184. |
[14] | Tang, J.-X., Belletti, F., Jain, S., et al. (2019) Towards Neural Mixture Recommender for Long Range Dependent User Sequences. Proceedings of the World Wide Web Conference, San Francisco, May 2019, 1782-1793.
https://doi.org/10.1145/3308558.3313650 |
[15] | Li, X.-Q., Jiang, W.-J., Chen, W.G., et al. (2019) HAES: A New Hybrid Ap-proach for Movie Recommendation with Elastic Serendipity. Proceedings of the 28th ACM International Conference, Beijing, Novem-ber 2019, 1503-1512.
https://doi.org/10.1145/3357384.3357868 |
[16] | Li, X.-Q., Jiang, W.-J., Chen, W.-G., et al. (2020) Directional and Explainable Serendipity Recommendation. Proceedings of the Web Conference, Taipei, April 2020, 122-132. https://doi.org/10.1145/3366423.3380100 |
[17] | Hinton, G.E. (2017) Dynamic Routing between Capsules. 31st Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 1-11. |