|
对抗式域适配迁移学习研究
|
Abstract:
[1] | Pan, S.J. and Yang, Q. (2010) A Survey on Transfer Learning. IEEE Transactions
on Knowledge and Data Engineering, 22, 1345-1359. https://doi.org/10.1109/TKDE.2009.191 |
[2] | Wang, J., Chen, Y., Feng, W., et al. (2020) Transfer Learning with Dynamic Distribution Adaptation. ACM Transactions on Intelligent Systems and Technology, 11, 1-25. https://doi.org/10.1145/3360309 |
[3] | Ganin, Y., Ustinova, E., Ajakan, H., et al. (2017) Domain-Adversarial Training of Neural Networks. In: Csurka, G., Ed., Domain Adaptation in Computer Vision Applications, Springer Inter-national Publishing, Cham, 189-209.
http://link.springer.com/10.1007/978-3-319-58347-1_10
https://doi.org/10.1007/978-3-319-58347-1_10 |
[4] | Tzeng, E., Hoffman, J., Saenko, K., et al. (2021) Adversarial Discriminative Domain Adaptation.
http://arxiv.org/abs/1702.05464 |
[5] | 戴宏, 盛立杰, 苗启广. 基于胶囊网络的对抗判别域适应算法[J]. 计算机研究与发展, 2021, 58(9): 1997-2012. |
[6] | Xu, M., Zhang, J., Ni, B., et al. (2020) Adversarial Domain Adaptation with Domain Mixup:
04. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 6502-6509. https://doi.org/10.1609/aaai.v34i04.6123 |
[7] | Zhang, Y., Tang, H., Jia, K., et al. (2019) Domain-Symmetric Net-works
for Adversarial Domain Adaptation. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, 6-20 June 2019, 5026-5035.
https://ieeexplore.ieee.org/document/8953920 https://doi.org/10.1109/CVPR.2019.00517 |
[8] | Tang, X. and Zhang, X. (2020) Conditional Adversarial Domain Adaptation Neural Network for Motor Imagery EEG Decoding. Entropy, 22, 96. https://doi.org/10.3390/e22010096 |
[9] | Chen, M., Zhao, S., Liu, H., et al. (2020) Adversarial-Learned Loss for Domain Adaptation: 04. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 3521-3528. https://doi.org/10.1609/aaai.v34i04.5757 |
[10] | Robbiano, L., Rahman, M.R.U., Galasso, F., et al. (2021) Adversar-ial Branch Architecture Search for Unsupervised Domain Adaptation. http://arxiv.org/abs/2102.06679 |
[11] | Pei, Z., Cao, Z., Long, M., et al. (2021) Multi-Adversarial Domain Adaptation. Thirty-Second AAAI Conference on Artificial Intelli-gence, New Orleans, 2-7 February 2018, 3934-3941.
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17067 |
[12] | Long, M., Cao, Z., Wang, J., et al. (2018) Conditional Adversarial Domain
Adaptation. In: Proceedings of the 32nd International Conference on
Neural In-formation Processing Systems, Curran Associates Inc., Red Hook, 1647-1657. |
[13] | Li, S., Liu, C.H., Xie, B., et al. (2019) Joint Adversarial Domain Adaptation. Proceedings of the 27th ACM International Conference on Multimedia, Nice, 21-25 October 2019, 729-737. https://doi.org/10.1145/3343031.3351070 |
[14] | Wang, J., Feng, W., Chen, Y., et al. (2018) Visual Domain Adaptation with Manifold Embedded Distribution Alignment. Proceedings of the 26th ACM International Conference on Multimedia, Seoul, 22-26 October 2018, 402-410.
https://doi.org/10.1145/3240508.3240512 |
[15] | Yu, C., Wang, J., Chen, Y., et al. (2019) Transfer Learning with Dynamic Adversarial Adaptation Network. 2019 IEEE International Conference on Data Mining (ICDM), Beijing, 8-11 November 2019, 778-786.
https://doi.org/10.1109/ICDM.2019.00088 |
[16] | Busto, P.P. and Gall, J. (2017) Open Set Domain Adaptation. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 754-763. http://ieeexplore.ieee.org/document/8237350
https://doi.org/10.1109/ICCV.2017.88 |
[17] | Saito, K., Yamamoto, S., Ushiku, Y., et al. (2018) Open Set Domain Adaptation by Backpropagation. In: Ferrari, V., Hebert, M., Sminchisescu, C., et al., Eds., Computer Vision—ECCV 2018, Springer International Publishing, Cham, 156-171. http://link.springer.com/10.1007/978-3-030-01228-1_10
https://doi.org/10.1007/978-3-030-01228-1_10 |
[18] | Liu, H., Cao, Z., Long, M., et al. (2019) Separate to Adapt: Open Set Domain Adaptation via Progressive Separation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 16-20 June 2019, 2922-2931. https://ieeexplore.ieee.org/document/8953906 https://doi.org/10.1109/CVPR.2019.00304 |
[19] | Cao, Z., Ma, L., Long, M., et al. (2018) Partial Adversarial Do-main Adaptation. ECCV 2018: 15th European Conference, Munich, 8-14 September 2018, 139-155. |
[20] | Cao, Z., Long, M., Wang, J., et al. (2018) Partial Transfer Learning with Selective Adversarial
Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
18-22 June 2018, 2724-2732.
https://ieeexplore.ieee.org/document/8578386 https://doi.org/10.1109/CVPR.2018.00288 |
[21] | Cao, Z., You, K., Long, M., et al. (2019) Learning to Transfer Examples for Partial Domain Adaptation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 16-20 June 2019, 2980-2989.
https://ieeexplore.ieee.org/document/8954395 https://doi.org/10.1109/CVPR.2019.00310 |
[22] | You, K., Long, M., Cao, Z., et al. (2019) Universal Domain Ad-aptation. Proceedings
of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, 15-20 June 2019, 2720-2729.
https://openaccess.thecvf.com/content_CVPR_2019/ html/You_Universal_Domain_Adaptation_CVPR_2019_paper.html |
[23] | Fu, B., Cao, Z., Long, M., et al. (2020) Learning
to Detect Open Classes for Universal
Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., et al., Eds.,
Computer Vision—ECCV 2020, Springer International Publishing, Cham, 567-583.
https://link.springer.com/10.1007/978-3-030-585 55-6_34 https://doi.org/10.1007/978-3-030-58555-6_34 |