全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2022 

Graphene-Polymer Nanocomposites and Roll-to-Roll (R2R) Compatible Flexible Solid-State Supercapacitor Based on Graphene Nanoplatelets and Ionic Liquid-Polymer Gel

DOI: 10.4236/graphene.2022.111001, PP. 1-18

Keywords: Flexible Supercapacitors, Specific Capacitance, Graphene, Roll-to-Roll, Nanocomposites, Farads

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present the electrical and supercapacitive performance of graphene nanoplatelets in polymer nanocomposites and flexible solid state electrical double layer capacitors (EDLC) respectively. Graphene-doped poly (3,4-ethylenedioxythiophene) (PEDOT) coated polyethylene terephthalate (PET) and glass exhibited transmittance above 95% and electrical conductivity of 2.70 × 10ˉ1 S·cmˉ1 and 9.01 × 10ˉ1 S·cmˉ1 respectively. Graphene loaded polymethyl methacrylate (PMMA) and polystyrene (PS) nanocomposites showed electrical conductivity as high as 2.11 × 10ˉ1 S·cmˉ1

References

[1]  Cai, X., Sun, K., Qui, Y. and Jiao, X. (2021) Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. Crystals, 11, 947-962.
https://doi.org/10.3390/cryst11080947
[2]  Jakube, P., Bartusek, S., Dvoracek, J.J., Sedajova, V., Kupka, V. and Otyrpka, M. (2021) Flax-Derived Carbon: A Highly Durable Electrode Material for Electrochemical Double-Layer Supercapacitors. Nanomaterials, 11, 2229-2241.
https://doi.org/10.3390/nano11092229
[3]  Mirzaeian, M., Abbas, Q., Hunt, M.R.C. and Hall, P. (2020) Pseudocapacitive Effect of Carbons Doped with Different Functional Groups as Electrode Materials for Electrochemical Capacitors. Energies, 13, 5577-5597.
https://doi.org/10.3390/en13215577
[4]  Bates, J., Markoulidis, F. and Lekakou, C. (2021) Design of Porous Carbons for Supercapacitor Applications forDifferent Organic Solvent-Electrolytes. Journal of Carbon Research, 7, 15-31.
https://doi.org/10.3390/c7010015
[5]  Diez-Pascal, A.M. (2021) Development of Graphene-Based Polymeric Nanocomposites: A Brief Overview. Polymers, 13, 2978-3002.
https://doi.org/10.3390/polym13172978
[6]  Perumal, S., Atchudan, R. and Cheong, I.W. (2021) Recent Studies on Dispersion of Graphene-Polymer Composites. Polymers, 13, 2375-2401.
https://doi.org/10.3390/polym13142375
[7]  Shtepliuk, I., Giannazzo, F. and Yakimova, R. (2021) Epitaxial Graphene on 4H-SiC (0001) as a Versatile Platform for Materials Growth: Mini-Review. Applied Sciences, 11, 5784-5800.
https://doi.org/10.3390/app11135784
[8]  Kim, Y., Kim, Y. and Kim, J.H. (2020) Highly Conductive PEDOT: PSS Thin Films with Two-Dimensional Lamellar Stacked Multi-Layers. Nanomaterials, 10, 2211-2220.
https://doi.org/10.3390/nano10112211
[9]  Chua, M.H., Zhu, Q., Shah, K.W. and Xu, J. (2019) Electroluminochromic Materials: From Molecules to Polymers. Polymers, 11, 98-132.
https://doi.org/10.3390/polym11010098
[10]  Pu, Z., Zheng, P. and Zhang, Y. (2021) Poly(3,4-Ethylenedioxythiophene) (PEDOT) Nanofibers Decorated Graphene Oxide (GO) as High-Capacity, Long Cycle Anodes for Sodium Ion Batteries. Materials, 11, 2032-2041.
https://doi.org/10.3390/ma11102032
[11]  Cymann, A., Sawczak, M., Ryl, J., Klugmann-Radziemska, E. and Wilamowska-Zawlocka, M. (2020) Capacitance Enhancement by Incorporation of Functionalised Carbon Nanotubes into Poly(3,4-Ethylenedioxythiophene)/Graphene Oxide Composites. Materials, 13, 2419-2435.
https://doi.org/10.3390/ma13102419
[12]  Sharma, S., Sudhakara, P., Omran, A.A.B., Singh, J. and Ilyas, R.A. (2021) Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers, 13, 2898-2928.
https://doi.org/10.3390/polym13172898
[13]  Dagadu, N.A., Ajori, S., Bensah, Y.D., Kan-Dapaah, K., Armah, S.K., Onwona-Agyeman, B. and Yaya, A. (2020) Stacking Interactions of Poly Para-Phenylene Vinylene Oligomers with Graphene and Single-Walled Carbon Nanotubes: A Molecular Dynamics Approach. Molecules, 25, 4812-4835.
https://doi.org/10.3390/molecules25204812
[14]  Qazi, R.A., Khattak, R., Shah, L.A., Ullah, R., Khan, M.S., Sadiq, M., Hessien, M.M. and El-Bahy, Z.M. (2021) Effect of MWCNTs Functionalization on Thermal, Electrical, and Ammonia-Sensing Properties of MWCNTs/PMMA and PHB/MWCNTs/PMMA Thin Films Nanocomposites. Nanomaterials, 11, 2625-2646.
https://doi.org/10.3390/nano11102625
[15]  Poldsalu, I., Rohtlaid, K., Plesse, C., Vidal, F., Nguyen, N.T., Peikolainen, A.L., Tamm, T. and Kiefer, R. (2020) Printed PEDOT:PSS Trilayer: Mechanism Evaluation and Application in Energy Storage. Materials, 13, 491-513.
https://doi.org/10.3390/ma13020491
[16]  Rouway, M., Natchtane, M., Tarfaoui, M., Chakhchaoui, N., Omari, L.H., Fraija, F. and Cherkaoui, O. (2021) Mechanical Properties of a Biocomposite Based on Carbon Nanotube and Graphene Nanoplatelet Reinforced Polymers: Analytical and Numerical Study. Journal of Composites Science, 5, 234-245.
https://doi.org/10.3390/jcs5090234
[17]  Joo, H., Han, H. and Cho, S. (2021) Fabrication of Poly(vinyl alcohol)-Polyaniline Nanofiber/Graphene Hydrogel for High-Performance Coin Cell Supercapacitor. Polymers, 12, 928-943.
https://doi.org/10.3390/polym12040928
[18]  Kumar, V., Kumar, A., Lee, D. and Park, S. (2021) Estimation of Number of Graphene Layers Using Different Methods: A Focused Review. Materials, 14, 4590-4611.
https://doi.org/10.3390/ma14164590
[19]  Wu, S., Tao, X. and Xu, W. (2021) Thermal Conductivity of Poplar Wood Veneer Impregnated with Graphene/Polyvinyl Alcohol. Forests, 12, 777-791.
https://doi.org/10.3390/f12060777
[20]  Guo, S., Chen, J., Zhang, Y. and Liu, J. (2021) Graphene-Based Films: Fabrication, Interfacial Modification, and Applications. Nanomaterials, 11, 2539-2558.
https://doi.org/10.3390/nano11102539
[21]  Sui, S., Wang, Y., Dimitrakopoulos, C. and Perry, S.L. (2018) A Graphene-Based Microfluidic Platform for Electrocrystallization and in Situ X-Ray Diffraction. Crystals, 8, 76-87.
https://doi.org/10.3390/cryst8020076
[22]  Sahu, D., Sutar, H., Senapati, P., Murmu, R. and Roy, D. (2021) Graphene, Graphene-Derivatives and Composites: Fundamentals, Synthesis Approaches to Applications. Journal of Composites Science, 5, 181-210.
https://doi.org/10.3390/jcs5070181
[23]  Peng, C. and Zhang, X. (2021) Chemical Functionalization of Graphene Nanoplatelets with Hydroxyl, Amino, and Carboxylic Terminal Groups. Chemistry, 3, 873-888.
https://doi.org/10.3390/chemistry3030064
[24]  Yang, Y., Palencia, J.L.D., Wang, N., Jaing, Y. and Wang, D. (2021) Nanocarbon-Based Flame Retardant Polymer Nanocomposites. Molecules, 26, 4670-4701.
https://doi.org/10.3390/molecules26154670
[25]  Bokare, A., Arif, J. and Erogbogbo, F. (2021) Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications. Nanomaterials, 11, 2211-2250.
https://doi.org/10.3390/nano11092211
[26]  Luceno-Sanchez, J.A., Diez-Pascual, A.M. and Capilla, R.P. (2019) Materials for Photovoltaics: State of Art and Recent Developments. International Journal of Molecular Sciences, 20, 976-1017.
https://doi.org/10.3390/ijms20040976
[27]  Wand, J., Adami, D., Lu, Bo., Liu, C., Maazouz, A. and Lamnawar, K. (2020) Multiscale Structural Evolution and Its Relationship to Dielectric Properties of Micro-/Nano-Layer Coextruded PVDF-HFP/PC Films. Polymer, 12, 2596-2607.
https://doi.org/10.3390/polym12112596
[28]  Jiang, Y., Deng, Y. and Qi, J. (2021) Microstructure Dependence of Output Performance in Flexible PVDF Piezoelectric Nanogenerators. Sensors and Actuators B: Polymer, 13, 3252-3262.
https://doi.org/10.3390/polym13193252
[29]  Shamsuri, A.A., Daik, R. and Jamil, S.N.A.M. (2021) A Succinct Review on the PVDF/Imidazolium-Based Ionic Liquid Blends and Composites: Preparations, Properties, and Applications. Processes, 9, 761-827.
https://doi.org/10.3390/pr9050761
[30]  Zhao, H., Jiang, J. and Shi, M. (2021) Electrodeposition of Aluminum in the 1-Ethyl-3-Methylimidazolium Tetrachloroaluminate Ionic Liquid. Electrochem, 2, 185-196.
https://doi.org/10.3390/electrochem2020013
[31]  Dzulkipli, M.Z., Karim, J., Ahmad, A., Dzulkurnain, N.A., Suait, M.S., Yoshizawa-Fujita, M., Khoo, L.T. and Hassan, N.H. (2021) The Influences of 1-Butyl-3-Methylimidazolium Tetrafluoroborate on Electrochemical, Thermal and Structural Studies as Ionic Liquid Gel Polymer Electrolyte. Polymers, 13, 1277-1293.
https://doi.org/10.3390/polym13081277
[32]  Ray, A. and Saruhan, B. (2021) Application of Ionic Liquids for Batteries and Supercapacitors. Materials, 14, 2942-2962.
https://doi.org/10.3390/ma14112942
[33]  Kim, E., Han, J., Ryu, S., Choi, Y. and Yoo, J. (2021) Ionic Liquid Electrolytes for Electrochemical Energy Storage Devices. Materials, 14, 4000-4030.
https://doi.org/10.3390/ma14144000
[34]  Rahman, Md.H., Werth, H., Goldman, A., Hida, Y., Diesner, C., Lane, L. and Menezes, P.L. (2021) Recent Progress on Electroactive Polymers: Synthesis, Properties and Applications. Ceramics, 4, 516-541.
https://doi.org/10.3390/ceramics4030038
[35]  Rauber, D., Hofmann, A., Phillipi, F., Kay, C.W.M., Zinkevich, T., Hanemann, T. and Hempelann, R. (2021) Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications. Applied Sciences, 11, 5679-5702.
https://doi.org/10.3390/app11125679
[36]  El Seoud, O.A., Keppelr, N., Malek, N.I. and Galgano, P.D. (2021) Ionic Liquid-Based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications. Polymers, 13, 1100-1150.
https://doi.org/10.3390/polym13071100
[37]  Conway, B.E. (1999) Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer Academics and Plenum, New York.
[38]  Cheng, Z. and Xu, C. (2021) Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development. Processes, 9, 337-372.
https://doi.org/10.3390/pr9020337
[39]  Jiang, K. and Gerhardt, R.A. (2021) Fabrication and Supercapacitor Applications of Multiwall Carbon Nanotube Thin Films. Journal of Carbon Research, 7, 70-141.
https://doi.org/10.3390/c7040070

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133