全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Urban Microclimate and Outdoor Thermal Comfort of Public Spaces in Warm-Humid Cities: A Comparative Bibliometric Mapping of the Literature

DOI: 10.4236/ajcc.2021.104023, PP. 433-466

Keywords: Urban Microclimate, Outdoor Thermal Comfort, Public Spaces, Bibliometric Analysis, Warm-Humid Cities, VOSviewer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intensified human population encourages urbanization changing the morphology and metabolism of urban environments, thus altering the local climate and outdoor thermal comfort (OTC) in public spaces. OTC is an increasingly urgent area of research for tropical climates. This study explores the literature from the Scopus database on urban microclimate and OTC in public spaces and contrasts the studies in warm-humid cities through a bibliometric mapping of literature. The adapted methodology includes; Bibliometric Search, Scientometric Analysis, and Content analysis using VOSviewer software to identify the evolution paths, gaps, and the most recent movement of OTC assessments in urban public spaces. Results reveal five evolution paths related to all climatic regions; 1) materials and cooling strategies, 2) simulation modeling and urban planning, 3) design parameters affecting thermal perception, 4) cooling effects of green infrastructure, and 5) thermal adaptation in urban design. Although urban morphology and vegetation have been received the highest attention respectively, only a few for blue infrastructure related to warm-humid cities. This review identified five research gaps; the impact of blue infrastructure on OTC, strategies to overcome the effect of reflective materials, vegetation configurations in street canyons with wind flow, OTC improvements in asymmetrical street canyons, and how local climate zone (LCZ) classification approach could be used for OTC assessments. Past empirical studies have revealed that urban vegetation, surface materials, and morphological parameters are of paramount importance. Yet, the urban blue infrastructure has not received adequate research. Recently, the attention of researchers has been drawn to strategies in improving OTC using micro-meteorological simulation modelling to examine the impact of urban design interventions. Finally, comprehensive content analysis, bibliographic coupling based on documents, co-occurrence of all-keywords, are suggested for future bibliometric reviews. Finally, further research on recommended areas would assist decision-makers in planning and design to enhance livability by improving microclimate and OTC in urban spaces.

References

[1]  Acero, J. A., Koh, E. J., Pignatta, G., & Norford, L. K. (2020). Clustering Weather Types for Urban Outdoor Thermal Comfort Evaluation in a Tropical Area. Theoretical and Applied Climatology, 139, 659-675.
https://doi.org/10.1007/s00704-019-02992-9
[2]  Agarwal, A., Durairajanayagam, D., Tatagari, S., Esteves, S. C., Harlev, A., Henkel, R., Bashiri, A. et al. (2016). Bibliometrics: Tracking Research Impact by Selecting the Appropriate Metrics. Asian Journal of Andrology, 18, 296.
https://doi.org/10.4103/1008-682X.171582
[3]  Algeciras, J. A. R., Consuegra, L. G., & Matzarakis, A. (2016). Spatial-Temporal Study on the Effects of Urban Street Configurations on Human Thermal Comfort in the World Heritage City of Camagüey-Cuba. Building and Environment, 101, 85-101.
https://doi.org/10.1016/j.buildenv.2016.02.026
[4]  Bartesaghi-Koc, C., Osmond, P., & Peters, A. (2019). Spatio-Temporal Patterns in Green Infrastructure as Driver of Land Surface Temperature Variability: The Case of Sydney. International Journal of Applied Earth Observation and Geoinformation, 83, Article ID: 101903.
https://doi.org/10.1016/j.jag.2019.101903
[5]  Broadbent, A. M., Coutts, A. M., Tapper, N. J., & Demuzere, M. (2018). The Cooling Effect of Irrigation on Urban Microclimate during Heatwave Conditions. Urban Climate, 23, 309-329.
https://doi.org/10.1016/j.uclim.2017.05.002
[6]  Chatzidimitriou, A., & Yannas, S. (2015). Microclimate Development in Open Urban Spaces: The Influence of Form and Materials. Energy and Buildings, 108, 156-174.
https://doi.org/10.1016/j.enbuild.2015.08.048
[7]  Chatzidimitriou, A., & Yannas, S. (2017). Street Canyon Design and Improvement Potential for Urban Open Spaces; the Influence of Canyon Aspect Ratio and Orientation on Microclimate and Outdoor Comfort. Sustainable Cities and Society, 33, 85-101.
https://doi.org/10.1016/j.scs.2017.05.019
[8]  Chow, W. T., Akbar, S. N. A. B. A., Heng, S. L., & Roth, M. (2016). Assessment of Measured and Perceived Microclimates within a Tropical Urban Forest. Urban Forestry & Urban Greening, 16, 62-75.
https://doi.org/10.1016/j.ufug.2016.01.010
[9]  De Abreu-Harbich, L. V., Labaki, L. C., & Matzarakis, A. (2015). Effect of Tree Planting Design and Tree Species on Human Thermal Comfort in the Tropics. Landscape and Urban Planning, 138, 99-109.
https://doi.org/10.1016/j.landurbplan.2015.02.008
[10]  Deng, J. Y., & Wong, N. H. (2020). Impact of Urban Canyon Geometries on Outdoor Thermal Comfort in Central Business Districts. Sustainable Cities and Society, 53, Article ID: 101966.
https://doi.org/10.1016/j.scs.2019.101966
[11]  Doulos, L., Santamouris, M., & Livada, I. (2004). Passive Cooling of Outdoor Urban Spaces. The Role of Materials. Solar Energy, 77, 231-249.
https://doi.org/10.1016/j.solener.2004.04.005
[12]  Eck, N., & Waltman, L. (2020). VOSviewer Manual. Leiden University’s Centre.
[13]  Eliasson, I. (2000). The Use of Climate Knowledge in Urban Planning. Landscape and Urban Planning, 48, 31-44.
https://doi.org/10.1016/S0169-2046(00)00034-7
[14]  Emmanuel, R., Rosenlund, H., & Johansson, E. (2007). Urban Shading—A Design Option for the Tropics? A Study in Colombo, Sri Lanka. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27, 1995-2004.
https://doi.org/10.1002/joc.1609
[15]  Fabbri, K., Gaspari, J., Bartoletti, S., & Antonini, E. (2020). Effect of Facade Reflectance on Outdoor Microclimate: An Italian Case Study. Sustainable Cities and Society, 54, Article ID: 101984.
https://doi.org/10.1016/j.scs.2019.101984
[16]  Falasca, S., Ciancio, V., Salata, F., Golasi, I., Rosso, F., & Curci, G. (2019). High Albedo Materials to Counteract Heat Waves in Cities: An Assessment of Meteorology, Buildings Energy Needs and Pedestrian Thermal Comfort. Building and Environment, 163, Article ID: 106242.
https://doi.org/10.1016/j.buildenv.2019.106242
[17]  Fintikakis, N., Gaitani, N., Santamouris, M., Assimakopoulos, M., Assimakopoulos, D. N., Fintikaki, M., Doumas, P. et al. (2011). Bioclimatic Design of Open Public Spaces in the Historic Centre of Tirana, Albania. Sustainable Cities and Society, 1, 54-62.
https://doi.org/10.1016/j.scs.2010.12.001
[18]  Fung, C. K., & Jim, C. Y. (2020). Influence of Blue Infrastructure on Lawn Thermal Microclimate in a Subtropical Green Space. Sustainable Cities and Society, 52, Article ID: 101858.
https://doi.org/10.1016/j.scs.2019.101858
[19]  Givoni, B. (1992). Comfort, Climate Analysis and Building Design Guidelines. Energy and Buildings, 18, 11-23.
https://doi.org/10.1016/0378-7788(92)90047-K
[20]  Han, J., Zhang, G., Zhang, Q., Zhang, J., Liu, J., Tian, L., Moschandreas, D. J. et al. (2007). Field Study on Occupants’ Thermal Comfort and Residential Thermal Environment in a Hot-Humid Climate of China. Building and Environment, 42, 4043-4050.
https://doi.org/10.1016/j.buildenv.2006.06.028
[21]  Hernández-Torrano, D., Ibrayeva, L., Sparks, J., Lim, N., Clementi, A., Almukhambetova, A., Muratkyzy, A. et al. (2020). Mental Health and Well-Being of University Students: A Bibliometric Mapping of the Literature. Frontiers in Psychology, 11, 1226.
https://doi.org/10.3389/fpsyg.2020.01226
[22]  Holst, J., & Mayer, H. (2011). Impacts of Street Design Parameters on Human-Bio Meteorological Variables. Meteorologische Zeitschrift, 20, 541.
https://doi.org/10.1127/0941-2948/2011/0254
[23]  Hoppe, P. (1999). The Physiological Equivalent Temperature—A Universal Index for the Bio Meteorological Assessment of the Thermal Environment. International Journal of Biometeorology, 43, 71-75.
https://doi.org/10.1007/s004840050118
[24]  Hsieh, C. M., Jan, F. C., & Zhang, L. (2016). A Simplified Assessment of How Tree Allocation, Wind Environment, and Shading Affect Human Comfort. Urban Forestry & Urban Greening, 18, 126-137.
https://doi.org/10.1016/j.ufug.2016.05.006
[25]  Jin, R., Zou, P. X., Piroozfar, P., Wood, H., Yang, Y., Yan, L., & Han, Y. (2019). A Science Mapping Approach Based Review of Construction Safety Research. Safety Science, 113, 285-297.
https://doi.org/10.1016/j.ssci.2018.12.006
[26]  Johansson, E., & Emmanuel, R. (2006). The Influence of Urban Design on Outdoor Thermal Comfort in the Hot, Humid City of Colombo, Sri Lanka. International Journal of Biometeorology, 51, 119-133.
https://doi.org/10.1007/s00484-006-0047-6
[27]  Johansson, E., Spangenberg, J., Gouvêa, M. L., & Freitas, E. D. (2013). Scale-Integrated Atmospheric Simulations to Assess Thermal Comfort in Different Urban Tissues in the Warm Humid Summer of São Paulo, Brazil. Urban Climate, 6, 24-43.
https://doi.org/10.1016/j.uclim.2013.08.003
[28]  Johansson, E., Yahia, M. W., Arroyo, I., & Bengs, C. (2018). Outdoor Thermal Comfort in Public Space in Warm-Humid Guayaquil, Ecuador. International Journal of Biometeorology, 62, 387-399.
https://doi.org/10.1007/s00484-017-1329-x
[29]  Kawshalya, L., Weerasinghe, U., & Chandrasekara, D. (2020). Fear of Crime in Urban Environments: A Bibliometric Mapping of the Literature. In 2020 from Innovation to Impact (FITI) (pp. 1-6). IEEE.
https://ieeexplore.ieee.org/document/9424901/authors#authors
https://doi.org/10.1109/FITI52050.2020.9424901
[30]  Kumar, P., & Sharma, A. (2021). Assessing the Thermal Comfort Conditions in Open Spaces: A Transversal Field Survey on the University Campus in India. International Journal of Built Environment and Sustainability, 8, 77-92.
https://doi.org/10.11113/ijbes.v8.n3.786
[31]  Lai, D., Liu, W., Gan, T., Liu, K., & Chen, Q. (2019). A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Science of the Total Environment, 661, 337-353.
https://doi.org/10.1016/j.scitotenv.2019.01.062
[32]  Lamarca, C., Qüense, J., & Henríquez, C. (2018). Thermal Comfort and Urban Canyons Morphology in Coastal Temperate Climate, Concepción, Chile. Urban Climate, 23, 159-172.
https://doi.org/10.1016/j.uclim.2016.10.004
[33]  Lau, K. K. L., Chung, S. C., & Ren, C. (2019). Outdoor Thermal Comfort in Different Urban Settings of Sub-Tropical High-Density Cities: An Approach of Adopting Local Climate Zone (LCZ) Classification. Building and Environment, 154, 227-238.
https://doi.org/10.1016/j.buildenv.2019.03.005
[34]  Lee, H., & Mayer, H. (2018). Maximum Extent of Human Heat Stress Reduction on Building Areas Due to Urban Greening. Urban Forestry & Urban Greening, 32, 154-167.
https://doi.org/10.1016/j.ufug.2018.04.010
[35]  Lee, H., Mayer, H., & Chen, L. (2016). Contribution of Trees and Grasslands to the Mitigation of Human Heat Stress in a Residential District of Freiburg, Southwest Germany. Landscape and Urban Planning, 148, 37-50.
https://doi.org/10.1016/j.landurbplan.2015.12.004
[36]  Lee, H., Mayer, H., & Kuttler, W. (2020). Impact of the Spacing between Tree Crowns on the Mitigation of Daytime Heat Stress for Pedestrians inside EW Urban Street Canyons under Central European Conditions. Urban Forestry & Urban Greening, 48, Article ID: 126558.
https://doi.org/10.1016/j.ufug.2019.126558
[37]  Lin, T. P., Matzarakis, A., Hwang, R. L., & Huang, Y. C. (2010). Effect of Pavements Albedo on Long-Term Outdoor Thermal Comfort (p. 497). Berichte des MeteorologischenInstituts der Albert-Ludwigs-Universität Freiburg.
[38]  Lin, T. P., Tsai, K. T., Hwang, R. L., & Matzarakis, A. (2012). Quantification of the Effect of Thermal Indices and Sky View Factor on Park Attendance. Landscape and Urban Planning, 107, 137-146.
https://doi.org/10.1016/j.landurbplan.2012.05.011
[39]  Mahmoud, H., Ghanem, H., & Sodoudi, S. (2021). Urban Geometry as an Adaptation Strategy to Improve the Outdoor Thermal Performance in Hot Arid Regions: Aswan University as a Case Study. Sustainable Cities and Society, 71, Article ID: 102965.
https://doi.org/10.1016/j.scs.2021.102965
[40]  Manteghi, G., Mostofa, T., & Noor, M. P. B. M. (2020). A Field Investigation on the Impact of the Wider Water Body On-Air, Surface Temperature and Physiological Equivalent Temperature at Malacca Town. International Journal of Environmental Science and Development, 11, 286-291.
https://doi.org/10.18178/ijesd.2020.11.6.1264
[41]  Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a Universal Thermal Index: Physiological Equivalent Temperature. International Journal of Biometeorology, 43, 76-84.
https://doi.org/10.1007/s004840050119
[42]  Mayer, H., & Höppe, P. (1987). Thermal Comfort of Man in Different Urban Environments. Theoretical and Applied Climatology, 38, 43-49.
https://doi.org/10.1007/BF00866252
[43]  Mayer, H., Holst, J., Dostal, P., Imbery, F., & Schindler, D. (2008). Human Thermal Comfort in Summer within an Urban Street Canyon in Central Europe. Meteorologische Zeitschrift, 17, 241-250.
https://doi.org/10.1127/0941-2948/2008/0285
[44]  Meng, L., Wen, K. H., Brewin, R., & Wu, Q. (2020). Knowledge Atlas on the Relationship between Urban Street Space and Residents’ Health—A Bibliometric Analysis Based on VOSviewer and CiteSpace. Sustainability, 12, 2384.
https://doi.org/10.3390/su12062384
[45]  Mongeon, P., & Paul-Hus, A. (2016). The Journal Coverage of Web of Science and Scopus: A Comparative Analysis. Scientometrics, 106, 213-228.
https://doi.org/10.1007/s11192-015-1765-5
[46]  Mora, L., Bolici, R., & Deakin, M. (2017). The First Two Decades of Smart-City Research: A Bibliometric Analysis. Journal of Urban Technology, 24, 3-27.
https://doi.org/10.1080/10630732.2017.1285123
[47]  Morakinyo, T. E., & Lam, Y. F. (2016). Simulation Study on the Impact of Tree-Configuration, Planting Pattern and Wind Condition on Street-Canyon’s Micro-Climate and Thermal Comfort. Building and Environment, 103, 262-275.
https://doi.org/10.1016/j.buildenv.2016.04.025
[48]  Morakinyo, T. E., Kong, L., Lau, K. K. L., Yuan, C., & Ng, E. (2017). A Study on the Impact of Shadow-Cast and Tree Species on In-Canyon and Neighborhood’s Thermal Comfort. Building and Environment, 115, 1-17.
https://doi.org/10.1016/j.buildenv.2017.01.005
[49]  Morakinyo, T. E., Lau, K. K. L., Ren, C., & Ng, E. (2018). Performance of Hong Kong’s Common Trees Species for Outdoor Temperature Regulation, Thermal Comfort and Energy Saving. Building and Environment, 137, 157-170.
https://doi.org/10.1016/j.buildenv.2018.04.012
[50]  Mouada, N., Zemmouri, N., & Meziani, R. (2019). Urban Morphology, Outdoor Thermal Comfort and Walkability in Hot, Dry Cities: Case Study in Sidi Okba, Algeria. International Review for Spatial Planning and Sustainable Development, 7, 117-133.
https://doi.org/10.14246/irspsda.7.1_117
[51]  Muniz-Gäal, L. P., Pezzuto, C. C., de Carvalho, M. F. H., & Mota, L. T. M. (2020). Urban Geometry and the Microclimate of Street Canyons in Tropical Climate. Building and Environment, 169, Article ID: 106547.
https://doi.org/10.1016/j.buildenv.2019.106547
[52]  Ng, E., Chen, L., Wang, Y., & Yuan, C. (2012). A Study on the Cooling Effects of Greening in a High-Density City: An Experience from Hong Kong. Building and Environment, 47, 256-271.
https://doi.org/10.1016/j.buildenv.2011.07.014
[53]  Nikolopoulou, M., & Steemers, K. (2003). Thermal Comfort and Psychological Adaptation as a Guide for Designing Urban Spaces. Energy and Buildings, 35, 95-101.
https://doi.org/10.1016/S0378-7788(02)00084-1
[54]  Peponi, A., & Morgado, P. (2020). Smart and Regenerative Urban Growth: A Literature Network Analysis. International Journal of Environmental Research and Public Health, 17, 2463.
https://doi.org/10.3390/ijerph17072463
[55]  Ruiz, M. A., & Correa, E. N. (2015). Adaptive Model for Outdoor Thermal Comfort Assessment in an Oasis City of Arid Climate. Building and Environment, 85, 40-51.
https://doi.org/10.1016/j.buildenv.2014.11.018
[56]  Setaih, K., Hamza, N., & Townshend, T. (2013). Assessment of Outdoor Thermal Comfort in Urban Microclimate in Hot Arid Areas. In 13th International Conference of International Building Performance Simulation Association, Chambery, France (pp. 3153-3160).
[57]  Shareef, S., & Abu-Hijleh, B. (2020). The Effect of Building Height Diversity on Outdoor Microclimate Conditions in Hot Climate. A Case Study of Dubai-UAE. Urban Climate, 32, Article ID: 100611.
https://doi.org/10.1016/j.uclim.2020.100611
[58]  Sharmin, T., Steemers, K., & Matzarakis, A. (2015). Analysis of Microclimatic Diversity and Outdoor Thermal Comfort Perceptions in the Tropical Megacity Dhaka, Bangladesh. Building and Environment, 94, 734-750.
https://doi.org/10.1016/j.buildenv.2015.10.007
[59]  Shashua-Bar, L., Pearlmutter, D., & Erell, E. (2011). The Influence of Trees and Grass on Outdoor Thermal Comfort in a Hot-Arid Environment. International Journal of Climatology, 31, 1498-1506.
https://doi.org/10.1002/joc.2177
[60]  Spagnolo, J., & De Dear, R. (2003). A Field Study of Thermal Comfort in Outdoor and Semi-Outdoor Environments in Subtropical Sydney Australia. Building and Environment, 38, 721-738.
https://doi.org/10.1016/S0360-1323(02)00209-3
[61]  Stewart, I. D., & Oke, T. R. (2012). Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society, 93, 1879-1900.
https://doi.org/10.1175/BAMS-D-11-00019.1
[62]  Su, H. N., & Lee, P. C. (2010). Mapping Knowledge Structure by Keyword Co-Occurrence: A First Look at Journal Papers in Technology Foresight. Scientometrics, 85, 65-79.
https://doi.org/10.1007/s11192-010-0259-8
[63]  Taleghani, M. (2018). Outdoor Thermal Comfort by Different Heat Mitigation Strategies—A Review. Renewable and Sustainable Energy Reviews, 81, 2011-2018.
https://doi.org/10.1016/j.rser.2017.06.010
[64]  Taleghani, M., Kleerekoper, L., Tenpierik, M., & Van Den Dobbelsteen, A. (2015). Outdoor Thermal Comfort within Five Different Urban Forms in the Netherlands. Building and Environment, 83, 65-78.
https://doi.org/10.1016/j.buildenv.2014.03.014
[65]  Tanudjaja, I., & Kow, G. Y. (2018). Exploring Bibliometric Mapping in NUS Using BibExcel and VOSviewer.
[66]  Teshnehdel, S., Akbari, H., Di Giuseppe, E., & Brown, R. D. (2020). Effect of Tree Cover and Tree Species on Microclimate and Pedestrian Comfort in a Residential District in Iran. Building and Environment, 178, Article ID: 106899.
https://doi.org/10.1016/j.buildenv.2020.106899
[67]  Thani, S. K. S. O., Mohamad, N. H. N., & Abdullah, S. M. S. (2013). The Influence of Urban Landscape Morphology on the Temperature Distribution of Hot-Humid Urban Centre. Procedia-Social and Behavioral Sciences, 85, 356-367.
https://doi.org/10.1016/j.sbspro.2013.08.365
[68]  Van Eck, N. J., & Waltman, L. (2019). VOSviewer Manual. University of Leiden.
https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.13.pdf
[69]  Venhari, A. A., Tenpierik, M., & Taleghani, M. (2019). The Role of Sky View Factor and Urban Street Greenery in Human Thermal Comfort and Heat Stress in a Desert Climate. Journal of Arid Environments, 166, 68-76.
https://doi.org/10.1016/j.jaridenv.2019.04.009
[70]  Wai, K. M., Xiao, L., & Tan, T. Z. (2021). Improvement of the Outdoor Thermal Comfort by Water Spraying in a High-Density Urban Environment under the Influence of a Future (2050) Climate. Sustainability, 13, 7811.
https://doi.org/10.3390/su13147811
[71]  Waltman, L., Eck, N. J. V., & Noyons, E. C. (2010). A Unified Approach to Mapping and Clustering of Bibliometric Networks. Journal of Informetrics, 4, 629-635.
https://doi.org/10.1016/j.joi.2010.07.002
[72]  Xue, J., You, R., Liu, W., Chen, C., & Lai, D. (2020). Applications of Local Climate Zone Classification Scheme to Improve Urban Sustainability: A Bibliometric Review. Sustainability, 12, 8083.
https://doi.org/10.3390/su12198083
[73]  Yahia, M. W., & Johansson, E. (2014). Landscape Interventions in Improving Thermal Comfort in the Hot Dry City of Damascus, Syria—The Example of Residential Spaces with Detached Buildings. Landscape and Urban Planning, 125, 1-16.
https://doi.org/10.1016/j.landurbplan.2014.01.014
[74]  Yahia, M. W., Johansson, E., Thorsson, S., Lindberg, F., & Rasmussen, M. I. (2018). Effect of Urban Design on Microclimate and Thermal Comfort Outdoors in Warm-Humid Dar es Salaam, Tanzania. International Journal of Biometeorology, 62, 373-385.
https://doi.org/10.1007/s00484-017-1380-7
[75]  Zaki, S. A., Toh, H. J., Yakub, F., Mohd Saudi, A. S., Ardila-Rey, J. A., & Muhammad-Sukki, F. (2020). Effects of Roadside Trees and Road Orientation on Thermal Environment in a Tropical City. Sustainability, 12, 1053.
https://doi.org/10.3390/su12031053
[76]  Zhao, L., & Shen, L. (2018). Bibliometric Analysis and Visualization on International Mobile Library Research Output, 2007-2016. In 2018 Chinese Control and Decision Conference (CCDC) (pp. 1902-1907). IEEE.
https://doi.org/10.1109/CCDC.2018.8407437
[77]  Zhao, T. F., & Fong, K. F. (2017). Characterization of Different Heat Mitigation Strategies in Landscape to Fight against Heat Island and Improve Thermal Comfort in Hot-Humid Climate (Part I): Measurement and Modelling. Sustainable Cities and Society, 32, 523-531.
https://doi.org/10.1016/j.scs.2017.03.025

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133