The aim of this study is to contribute to the mastery of the physical
characteristics of lateritic soils in order to improve their use for the
manufacture of Compressed Stabilized Earth Bricks (CSEB) in the province of
North Kivu in the Democratic Republic of Congo (DRC). The study of the physical
characteristics of lateritic soils was carried out. Samples were subjected to
experimental identification tests on the physical characteristics (water
content, density characteristics, particle size distribution and consistency).
The results of the laboratory analysis of soil samples show that the water
content varies between 5.4% and 36.99%. The density of the solid grains has an
arithmetic mean of 2.5 g/cm3. The apparent density varies from 0.83
to 1.35 g/cm3. As for the dry density, it is in the range of 0.61 to
1.25 g/cm3. These relatively low densities indicate that the
material studied has a significant degree of deformability. From the particle size analysis,
it appears that the material studied contains an
important fraction of fine particles. According to the consistency study, the
soils studied are plastic clay as Ap class according to the Central Laboratory
for Roads and Bridges (CLRB) geotechnical classification system. The particle
size curves of the studied samples are within the preferential range of good
soils for the manufacture of CSEB. The points representing the studied samples
are within the preferential plasticity range of good soils for the manufacture
of CSEB. From the above parameters, it appears that the studied material is
well adapted for the manufacture of the Compressed Stabilized Earth Bricks
References
[1]
Ait Kadi, S. (2012) Performances thermique du matériau terre pour un habitat durable des régions aride et semi arides: Cas de Timimoun. Université Mouloud Mammeri Tizi Ouzou, Algerie.
[2]
Association le Gabion (2000) Document terre La brique de terre comprimée. 05200 EMBRUN.
[3]
Morel, J.C., Mesbah, A., Oggero, M. and Walker, P. (2001) Building Houses with Local Materials: Means to Drastically Reduce the Environmental Impact of Construction. Building and Environment, 36, 1119-1126. https://doi.org/10.1016/S0360-1323(00)00054-8
[4]
Jimenez Delgado, M.C. and Guerrero, I.C. (2007) The Selection of Soils for Unstabilised Earth Building: A Normative Review. Construction and Building Materials, 21, 237-251. https://doi.org/10.1016/j.conbuildmat.2005.08.006
[5]
Bachar, M., Azzouz, L., Rabehi, M. and Mezghiche, B. (2014) Characterization of a Stabilized Earth Concrete and the Effect of Incorporation of Aggregates of Cork on Its Thermo-Mechanical Properties: Experimental Study and Modeling. Construction and Building Materials, 74, 259-267. https://doi.org/10.1016/j.conbuildmat.2014.09.106
[6]
Oyelami, C.A. and Van Rooy, J.L. (2016) A Review of the Use of Lateritic Soils in the Construction/Development of Sustainable Housing in Africa: A Geological Perspective. Journal of African Earth Sciences, 119, 226-237. https://doi.org/10.1016/j.jafrearsci.2016.03.018
[7]
Arumala, J.O. (2007) Compressed Earth Building Bricks for Affordable Housing. The Construction and Building Research Conference of the Royal Institution of Chartered Surveyors, London, 2007, 21.
[8]
Oti, J.E., Kinuthia, J.M. and Bai, J. (2009) Engineering Properties of Unfired Clay Masonry Bricks. Engineering Geology, 107, 130-139. https://doi.org/10.1016/j.enggeo.2009.05.002
[9]
Das, S.K., Samui, P. and Sabat, A.K. (2010) Application of Artificial Intelligence to Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilized Soil. Geotechnical and Geological Engineering, 29, 329-342. https://doi.org/10.1007/s10706-010-9379-4
[10]
Deboucha, S. and Hashim, R. (2011) Correlation between Total Water Absorption and Wet Compressive Strength of Compressed Stabilised Peat Bricks.
[11]
Villamizar, M.C.N., Araque, V.S., Reyes, C.A.R. and Silva, R.S. (2012) Effect of the Addition of Coal-Ash and Cassava Peels on the Engineering Properties of Compressed Earth Blocks. Construction and Building Materials, 36, 276-286. https://doi.org/10.1016/j.conbuildmat.2012.04.056
[12]
Houben, H. and Guillaud, H. (1994) Earth Construction—A Comprehensive Guide. Intermediate Technology, London.
[13]
Taallah, B., Guettala, A., Guettala, S. and Kriker, A. (2014) Mechanical Properties and Hygroscopicity Behavior of Compressed Earth Block Filled by Date Palm Fibers. Construction and Building Materials, 59, 161-168. https://doi.org/10.1016/j.conbuildmat.2014.02.058
[14]
Margesin, R. and Schinner, F. (2005) Manual of Soil Analysis. Monitoring and Assessing Soil Bioremediation. Springer, Berlin, 370 p. https://doi.org/10.1007/3-540-28904-6
[15]
Norme XP CEN ISO/TS 17892-1 (2005) Reconnaissance et Essais géotechniques— Essais de Laboratoire sur les sols—Partie 1: Détermination de la teneur en eau.
[16]
Norme NF P 94-054 (1991) Sols: Reconnaissance et essais. Détermination de la masse volumique des sols fins en laboratoire. Méthode du pycnomètre à eau. AFNOR, Paris.
[17]
Norme NF P 94-053 (1991) Sols: Reconnaissance et essais. Détermination de la masse volumique des sols fins en laboratoire. Méthode de la trousse coupante, du moule et de l’immersion dans l’eau. AFNOR, Paris.
[18]
Norme NF P 18-560 (1990) Sols: Reconnaissance et essais, Analyse granulométrique par tamisage. AFNOR, Paris.
[19]
Norme NF P 94-057 (1992) Sols: Reconnaissance et essais, Analyse granulométrique des sols-Méthode par sédimentométrie. AFNOR, Paris.
[20]
Norme NF P 94-051 (1993) Sols: Reconnaissance et essais. Détermination des limites d’Atterberg. Limite de liquidité à la coupelle-limite de plasticité au rouleau. AFNOR, Paris.
[21]
Norme ISO 13317-1 (2001) Détermination de la distribution granulométrique par les méthodes de sédimentation par gravité dans un liquide-Partie 1: Principes généraux et lignes directrices. AFNOR, Paris.
[22]
Norme AFNOR XP P13-901:2001-10 (2001) Grain Size Range and Plasticity Range for Suitable Soil in Earth Construction.
[23]
Rigassi, V. (1995) Compressed Earth Blocks: A Publication of Deutsches Zentrum fur Entwicklungstechnologien—GATE, a Division of the Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH in Coordination with the Building Advisory Service and Information Network. Vieweg, Braunschweig.
[24]
Delgado, M.C.J. and Guerrero, I.C. (2006) Earth Building in Spain. Construction and Building Materials, 20, 679-690. https://doi.org/10.1016/j.conbuildmat.2005.02.006
[25]
Goodary, R., Lecomte-Nana, G.L., Petit, C. and Smith, D.S. (2012) Investigation of the Strength Development in Cement-Stabilised Soils of Volcanic Origin. Construction and Building Materials, 28, 592-598. https://doi.org/10.1016/j.conbuildmat.2011.08.054
[26]
Guerin, L. (1985) Construction à faible coût dans les programmes spéciaux de travaux publics.
[27]
Classification des sols fins selon le laboratoire central des ponts et chausses (LCPC) à Paris.