We prove that every
matrix F∈Mk (Pn) is associated withthe smallest positive integer d (F)≠1 such that d (F)‖F‖∞is always bigger than the sum of the operator norms of
the Fourier coefficients of F. We
establish some inequalities for matrices of complex polynomials. In application,
we show that von Neumann’s inequality holds up to the constant 2n for matrices of the algebraMk (Pn).
References
[1]
von Neumann, J. (1951) Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes. Mathematische Nachrichten, 4, 258-281. https://doi.org/10.1002/mana.3210040124
[2]
Brehmer, S. (1961) Uber vertauschbare Kontractionen des Hilbertschen Raumes. Acta Scientiarum Mathematicarum (Szeged), 22, 106-111.
[3]
Ando, T. (1963) On a Pair of Commutative Contractions. Acta Scientiarum Mathematicarum (Szeged), 24, 88-90.
[4]
Varopoulos, N.T. (1974) On an Inequality of Von Neumann and an Application of the Metric Theory of Tensor Products to Operators Theory. Journal of Functional Analysis, 16, 83-100. https://doi.org/10.1016/0022-1236(74)90071-8
[5]
Paulsen, V.I. (1986) Completely Bounded Maps and Dilations. London Mathematical Society, Harlow, Essex, England.
[6]
Lubin, A. (1978) Research Notes on Von Neumann’s Inequality. International Journal of Mathematics and Mathematical Sciences, 1, 133-136. https://doi.org/10.1155/S0161171278000162
[7]
Nikolski, N.K. (2002) Operators, Functions, and Systems: An Easy Reading, Vol. 2: Model Operators and Systems. American Mathematical Society, USA.
[8]
Kosiński, L. (2015) Three-Point Nevanlinna-Pick Problem in the Polydisc. Proceedings of the London Mathematical Society, 111, 887-910. https://doi.org/10.1112/plms/pdv045
[9]
Moussounda Mouanda, J. (2020) On Von Neumann’s Inequality for Tuples of Complex Triangular Toeplitz Contractions. Rocky Mountain Journal of Mathematics, 50, 213-224. https://doi.org/10.1216/rmj.2020.50.213
[10]
Moussounda Mouanda, J. (2021) On Kadison’s Similary Problem for Homomorphism of the Algebra of Complex Polynomials. Advances in Pure Mathematics, 11, 755-770. https://doi.org/10.4236/apm.2021.119050
[11]
Lotto, B.A. (1994) Von Neumann’s Inequality for Commuting, Diagonalizable Contractions, I. Proceedings of the American Mathematical Society, 120, 889-895. https://doi.org/10.1090/S0002-9939-1994-1169881-8