全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

嗜盐菌对高盐废水处理的研究进展
Research Progress on the Treatment of Hypersaline Wastewater by Halophilic Bacteria

DOI: 10.12677/AMB.2021.104023, PP. 182-188

Keywords: 嗜盐菌,高盐废水,废水处理,经济节约,环境友好
Halophilic Bacteria
, Hypersaline Wastewater, Wastewater Treatment, Economy, Environmentally Friendly

Full-Text   Cite this paper   Add to My Lib

Abstract:

许多工业生产活动都会产生废水,有些废水含高盐度、高有机质和其他可危害环境的污染物。目前,含盐废水的处理已成为许多国家关注的重要问题之一。本文介绍了高盐废水的来源、特点,以及传统处理高盐废水的方法和存在的缺陷。嗜盐菌因为其生长环境特殊,利用其具有的独特功能来处理高盐废水,是一种经济节约、环境友好的好方法。嗜盐菌在高盐废水处理中有巨大应用潜力。本文阐述了嗜盐菌的分类及嗜盐机理,同时对去除高盐废水中的石油烃类、重金属以及氮磷等的研究进展进行了综述,最后,展望了嗜盐菌在处理废水中的应用前景和面临的挑战,为后续的嗜盐菌处理高盐废水等研究提供参考。
Many industries produce wastewater, some of which contain high salinity, high contents of organic matters and other pollutants that can harm the environment. Now the treatment of hypersaline wastewater has become one of the main concerns in many countries. This article introduces the source and characteristics of hypersaline wastewater, as well as traditional treatment methods and limitations. Because of the special growth environment of halophilic bacteria, it is an economical and environmentally friendly method to use its unique function to treat hypersaline wastewater. Halophilic bacteria have great potential in the treatment of hypersaline wastewater. In this paper, the classification and mechanism of halophilic bacteria are described, and the research progress on the removal of petroleum hydrocarbons, heavy metals and nitrogen and phosphorus in hypersaline wastewater is reviewed. Finally, the application and challenges of halophilic bacteria in wastewater treatment are prospected, providing reference for the subsequent research on the treatment of hypersaline wastewater by halophilic bacteria.

References

[1]  Belkin, S., Brenner, A. and Abeliovich, A. (1993) Biological Treatment of a High Salinity Chemical Industry Wastewater. Water Science & Technology, 31, 61-72.
[2]  Yan, H., Han, Z., Zhao, H., Pan, J., Zhao, Y., Tucker, M.E., Zhou, J., Yan, X., Yang, H. and Fan, D. (2020) The Bio-Precipitation of Calcium and Magnesium Ions by Free and Immobilized Lysinibacillus fusiformis DB1-3 in the Wastewater. Journal of Cleaner Production, 252, Article ID: 119826.
https://doi.org/10.1016/j.jclepro.2019.119826
[3]  尤作亮, 蒋展鹏, 祝万鹏. 海水直接利用及其环境问题分析[J]. 给水排水, 1984, 24(3): 64-67.
[4]  刘洪斌. 我国海水淡化私海水直接利用事业前景的分析[J]. 海洋技术, 1995, 14(4): 76-78.
[5]  文湘华, 占新民, 王建龙等. 含盐废水的生物处理研究进展[J]. 环境科学, 1999, 20(3): 104-106.
[6]  廖柳琳. 高盐废水处理工艺研究进展探[J]. 环境与发展, 2019, 31(10): 67-69.
[7]  Kargi, F. and Dincer, A.R. (2000) Use of Halophilic Bacteria in Treatment of Saline. Water Environment Research, 72, 170-174.
https://doi.org/10.2175/106143000X137248
[8]  Sundarapandiyan, S.C., Ramanaiah, B., et al. (2010) Electrochemical Oxidation and Reuse of Tannery Saline Wastewater. Journal of Hazardous Materials, 180, 197-203.
https://doi.org/10.1016/j.jhazmat.2010.04.013
[9]  刘德新. 油田污水处理[M]. 北京: 石油大学出版社, 2015.
[10]  王伟, 刘俊杰, 张桂风. 焚烧法处理高浓度有机、含盐废水的研究分析[J]. 黑龙江环境通报, 2008(3): 70-71.
[11]  林成先. 工业含盐有机废水处理技术研究[J]. 科技视界, 2014(10): 262-327.
[12]  Ku, D.J. (1978) Life in High Salt and Solute Concentrations. In: Microbial Life in Extreme Environments, Academic Press, London, 317-368.
[13]  陶卫平. 嗜盐菌的嗜盐机制[J]. 生物学通报, 1996, 31(1): 23-24.
[14]  陈梅梅, 邓皓, 宋佳宇, 等. 嗜盐菌的筛选及原油降解性能[J]. 环境工程学报, 2014, 8(1): 372-377.
[15]  Kapdan, I.K. and Erten, B. (2007) Anaerobic Treatment of Saline Wastewater by Halanaerobium lacusrosei. Process Biochemistry, 42, 449-453.
https://doi.org/10.1016/j.procbio.2006.09.001
[16]  温洪宇, 廖银章. 二株细菌处理石油废水的比较研究[J]. 淮北煤炭师范学院学报, 2004, 25(4): 58-61.
[17]  Dastgheib, S.M.M., Amoozegar, M.A., Khajeh, K., Shavandi, M. and Ventosa, A. (2012) Biodegradation of Polycyclic Aromatic Hydrocarbons by a Halophilic Microbial Consortium. Applied Microbiology and Biotechnology, 95, 789-798.
https://doi.org/10.1007/s00253-011-3706-4
[18]  Peyton, B.M., Wilson, T. and Yonge, D.R. (2002) Kinetics of Phenol Biodegradation in High Salt Solutions. Water Research, 36, 4811-4820.
https://doi.org/10.1016/S0043-1354(02)00200-2
[19]  Woolard, C.R. and Ircine, R.L. (1995) Treatment of Hypersaline Wastewater in the Sequencing Batch Reator. Water Research, 29, 1159-1168.
https://doi.org/10.1016/0043-1354(94)00239-4
[20]  Martins, M., Faleiro, M.L., Barrosr, J., et al. (2009) Characterization and Activity Studies of Highly Heavy Metal Resistant Sulphate Reducing Bacteria to Be Used in Acid Mine Drainage Decontamination. Journal of Hazardous Materials, 166, 706-713.
https://doi.org/10.1016/j.jhazmat.2008.11.088
[21]  Macaskie, L.E., Empson, R.M., Cheetham, A.K., Grey, C.P. and Skarnulis, A.J. (1992) Uranium Bioaccumulation by a Citrobacter sp. as a Result of Enzymically Mediated Growth of Polycrystalline HUO2PO4. Science, 257, 782-784.
https://doi.org/10.1126/science.1496397
[22]  Wang, X., Jiang, H., Zheng, G., Liang, J. and Zhou, L. (2021) Recovering Iron and Sulfate in the Form of Mineral from Acid Mine Drainage by a Bacteria-Driven Cyclic Biomineralization System. Chemosphere, 262, Article ID: 127567.
https://doi.org/10.1016/j.chemosphere.2020.127567
[23]  Kulkarni, S., Misra, C.S., Gupta, A., Ballal, A. and Apte, S.K. (2016) Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation. Applied and Environmental Microbiology, 82, 4965- 4974.
https://doi.org/10.1128/AEM.00728-16
[24]  George, B. (2012) Ammonia Biofiltration and Nitrous Oxide Generation during the Start-Up of Gas-Phase Compost Biofilters. Atmospheric Environment, 46, 659-664.
https://doi.org/10.1016/j.atmosenv.2011.10.019
[25]  Bertrand, J.C., Amallah, M., Acquaviva, M., et al. (1990) Biodegradation of Hydrocarbons by an Extremely Halophilic Archaebacterium. Letters in Applied Microbiology, 11, 260-263.
https://doi.org/10.1111/j.1472-765X.1990.tb00176.x
[26]  Wang, Z., Su, J., Ali, A., Zhang, R., Yang, W., Xu, L. and Zhao, T. (2021) Microbially Induced Calcium Precipitation Based Simultaneous Removal of Fluoride, Nitrate, and Calcium by Pseudomonas sp. WZ39: Mechanisms and Nucleation Pathways. Journal of Hazardous Materials, 416, Article ID: 125914.
https://doi.org/10.1016/j.jhazmat.2021.125914
[27]  Wang, Z., Su, J.F., Hu, X.F., Ali, A. and Wu, Z.Z. (2021) Isolation of Biosynthetic Crystals by Microbially Induced Calcium Carbonate Precipitation and Their Utilization for Fluoride Removal from Groundwater. Journal of Hazardous Materials, 406, Article ID: 124748.
https://doi.org/10.1016/j.jhazmat.2020.124748
[28]  Han, Z.Z., Guo, N., Yan, H.X., Xu, Y.D., Wang, J.H., Zhao, Y.Y., et al. (2021) Recovery of Phosphate, Magnesium and Ammonium from Eutrophic Water by Struvite Biomineralization through Free and Immobilized Bacillus cereus MRR2. Journal of Cleaner Production, 320, Article ID: 128796.
https://doi.org/10.1016/j.jclepro.2021.128796

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133