|
考虑尺度效应及记忆依赖效应半无限大薄板的热及化学冲击动态响应
|
Abstract:
基于记忆依赖微分理论,研究了半无限大薄板在热及化学冲击作用下的动态响应。文中给出考虑尺度效应及记忆依赖效应的半无限大薄板广义热弹性控制方程,通过拉普拉斯积分变换及其数值反变换对控制方程进行了求解,得到了热及化学冲击作用下的半无限大薄板中,非局部参数、热传导时间迟滞因子和扩散时间迟滞因子对温度、应力、位移、浓度和化学势的影响。结果表明:非局部参数对温度、浓度和化学势几乎没有影响;体现记忆效应的核函数选取对各个物理量都有不同程度的影响。
Based on memory-dependent differential theory, the dynamic response of semi-infinite thin plates subjected to thermal and chemical shocks is studied. In this paper, the generalized thermoelastic governing equation of semi-infinite thin plate considering the scale effect and memory dependent effect is given. The governing equation is solved by the Laplace integral transform and its numerical inverse transform. The equations of semi-infinite thin plate under thermal and chemical shock are obtained. Influence of non-local parameters, heat conduction time hysteresis factor and diffusion time hysteresis factor on temperature, stress, displacement, concentration and chemical potential. The results show that the non-local parameters have little effect on temperature, concentration and chemical potential. Kernel function selection which embodies memory effect has different influences on each physical quantity.
[1] | Lord, H.W. and Shulman, Y.A. (2007) A Generalized Dynamical Theory of Thermoelasticity. Journal of the Mechanics and Physics of Solids, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5 |
[2] | Green, A. and Lindsay, K.A. (1972) Thermoelasticity. Journal of Elasticity, 2, 1-7.
https://doi.org/10.1007/BF00045689 |
[3] | Youssef, H.M. (2013) Theory of Two-Temperature-Generalized Ther-moelasticity. IMA Journal of Applied Mathematics, 71, 383-390. https://doi.org/10.1093/imamat/hxh101 |
[4] | Tzou, D.Y. (1995) A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales. Journal of Heat Transfer, 117, 8-16. https://doi.org/10.1115/1.2822329 |
[5] | Qi, X. and Suh, C.S. (2010) Generalized Thermo-Elastodynamics for Semiconductor Material Subject to Ultrafast Laser Heating. Part I: Model Description and Validation. International Journal of Heat & Mass Transfer, 53, 41-47.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.010 |
[6] | Kuang, Z.B. (2009) Variational Principles for Ge-neralized Dynamical Theory of Thermopiezoelectricity. Acta Mechanica, 203, 1-11. https://doi.org/10.1007/s00707-008-0039-1 |
[7] | Wang, Y.Z., Zhang, X.B. and Song, X.N. (2014) A Generalized Theory of Thermoelasticity Based on Thermomass and Its Uniqueness Theorem. Acta Mechanica, 225, 797-808. https://doi.org/10.1007/s00707-013-1001-4 |
[8] | Li, C., Chen, Y. and Kurths, J. (2013) Fractional Calculus and Its Applications. Philosophical Transactions, 371, Article ID: 20130037. https://doi.org/10.1098/rsta.2013.0037 |
[9] | Liu, L.L. and Duan, J.S. (2015) A Detailed Analysis for the Funda-mental Solution of Fractional Vibration Equation. Open Mathematics, 13, 111-129. https://doi.org/10.1515/math-2015-0077 |
[10] | 李岩. 分数阶微积分及其在粘弹性材料和控制理论中的应用[D]: [博士学位论文]. 济南: 山东大学, 2008. |
[11] | Povstenko, Y.Z. (2012) Nonaxisymmetric Solutions of the Time-Fractional Heat Conduction Equation in a Half-Space in Cylindrical Coordinates. Journal of Mathematical Sciences, 183, 252-260.
https://doi.org/10.1007/s10958-012-0811-6 |
[12] | Youssef, H.M. and Al-Lehaibi, E.A. (2010) Fractional Order Generalized Thermoelastic Half-Space Subjected to Ramp-Type Heating. Mechanics Research Communications, 37, 448-452.
https://doi.org/10.1016/j.mechrescom.2010.06.003 |
[13] | Ef, S., et al. (2004) The Theory of Generalized Ther-moelastic Diffusion. International Journal of Engineering Science, 42, 591-608. |
[14] | Sherief, H.H. and Saleh, H.A. (2005) A Half-Space Problem in the Theory of Generalized Thermoelastic Diffusion. International Journal of Solids & Structures, 42, 4484-4493. https://doi.org/10.1016/j.ijsolstr.2005.01.001 |
[15] | 马永斌, 何天虎. 基于分数阶热弹性理论的含有球型空腔无限大体的热冲击动态响应[J]. 工程力学, 2016(7): 31-38. |
[16] | 何天虎, 李林. 分数阶热弹性理论下的广义电磁热弹问题[J]. 兰州理工大学学报, 2016, 42(2): 167-172. |
[17] | Wang, J.L. and Li, H.F. (2011) Surpassing the Fractional Derivative: Concept of the Memory-Dependent Derivative. Computers & Mathematics with Applications, 62, 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028 |
[18] | Othman, M. and Sur, A. (2020) Transient Response in an Elasto-Thermo-Diffusive Medium in the Context of Memory-Dependent Heat Transfer. Waves in Random and Complex Media, 3, 1-24.
https://doi.org/10.1080/17455030.2020.1737758 |
[19] | 李妍. 广义热弹扩散记忆依赖问题的瞬态响应分析[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2019. |
[20] | Wilmanski, K. (1979) Localization Problem of Nonlocal Conti-nuum Theories. Archives of Mechanics, 85, 317-325. |
[21] | Eringen and Cemal, A. (1983) On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves. Journal of Applied Physics, 54, 4703-4710. https://doi.org/10.1063/1.332803 |