Bacterial cellulose (BC)-Nanoskin® has become established as a new biomaterial and can be used in several medicine areas, especially for medical devices mainly in dental and orthopedics applications. In addition, biomaterials have rise because of the increased interest in tissue engineering and regeneratine medicine materials for wound care and skin cancer treatment. The BC process production can be changed by different fermentation process. It has particular properties that make it an ideal candidate as a medical material: high mechanical properties, biocompatibility to the host tissue, and production in various shapes and sizes. This review describes a behavior investigation of this biomaterial in human medicine with bacterial cellulose, skin cancer, covid-19 and 3-D print for medical area.
References
[1]
ASTM Standard E2456 (2006) Standard Terminology Relating to Nnaotechnology. ASTM International, West Conshohocken. https://doi.org/10.1520/E2456-06
[2]
Buzea, C., Pacheco, I.I. and Robbie, K. (2007) Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases, 2, MR17-MR71. https://doi.org/10.1116/1.2815690
[3]
Mühling, M., Bradford, A., Readman, J.W., Somerfield, P.J. and Handy, R.D. (2009) An Investigation into the Effects of Silver Nanoparticles on Antibiotic Resistance of Naturally Occurring Bacteria in an Estuarine Sediment. Marine Environmental Research, 68, 278-283. https://doi.org/10.1016/j.marenvres.2009.07.001
[4]
Drake, P.L. and Hazelwood, K.J. (2005) Exposure-Related Health Effects of Silver and Silver Compounds: A Review. Annals of Occupational Hygiene, 49, 575-585.
[5]
White, J.M.L., Powell, A.M., Brady, K. and Russell-Jones, R. (2003) Severe Generalized Argryia Secondary Ingestion of Colloidal Silver Protein. Clinical and Experimental Dermatology, 28, 254-256. https://doi.org/10.1046/j.1365-2230.2003.01214.x
[6]
Lee, H.J., Yeo, S.Y. and Jeong, S.H. (2003) Antibacterial Effect of Nanosized Silver Colloidal Solution on Textile Fabrics. Journal of Materials Science, 38, 2199-2204. https://doi.org/10.1023/A:1023736416361
[7]
Lee, K.J., Lee, Y., Shim, I., Joung, J. and Oh, Y.S. (2006) Direct Synthesis and Bonding Origins of Monolayer-Protected Silver Nanocrystals from Silver Nitrate through in Situ Ligand Exchange. Journal of Colloid and Interface Science, 304, 92-97. https://doi.org/10.1016/j.jcis.2006.08.037
[8]
Lee, K.J., Lee, Y., Shim, I., Jun, B.H., Cho, H.J. and Joung, J. (2007) Large-Scale Synthesis of Polymer-Stabilized Silver Nanoparticles. Solid State Phenomena, 124-126, 1189-1192. https://doi.org/10.4028/www.scientific.net/SSP.124-126.1189
[9]
Lee, K.J., Nallathamby, P.D., Browning, L.M., Osgood, C.J. and Xu, X.N. (2007) In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos. Journal of the American Chemical Society, 1, 133-143. https://doi.org/10.1021/nn700048y
[10]
Lee, K.J., Park, J.T., Goh, J.H. and Kim, J.H. (2008) Synthesis of Amphiphilic Graft Copolymer Brush and Its Use as Template Film for the Preparation of Silver Nanoparticles. Journal of Polymer Science Part A Polymer Chemistry, 46, 3911-3918. https://doi.org/10.1002/pola.22718
[11]
Gatti, A.M. (2004) Biocompatibility of Micro- and Nano-Particles in the Colon. Part II. Biomaterials, 25, 385-392. https://doi.org/10.1016/S0142-9612(03)00537-4
[12]
Gatti, A.M., Montanari, S., Monari, E., Gambarelli, A., Capitani, F. and Parisini, B. (2004) Detection of Micro- and Nano-Sized Biocompatible Particles in the Blood. Journal of Materials Science: Materials in Medicine, 15, 469-472. https://doi.org/10.1023/B:JMSM.0000021122.49966.6d
[13]
Poon, V.K. and Burd, A. (2004) In Vitro Cytotoxity of Silver: Implication for Clinical Wound Care. Burns, 30, 140-147. https://doi.org/10.1016/j.burns.2003.09.030
[14]
Asharani, P.V., Nair, G., Zhiyuan, H., Manoor, P. and Valiyaveettil, S. (2007) Potential Health Impacts of Silver Nanoparticles. Abstracts of Papers, 234th ACS National Meeting, Boston, 19-23 August 2007, TOXI-099.
[15]
Braydich-Stolle, L., Hussain, S., Schlager, J.J. and Hofmann, M.C. (2005) In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicological Sciences, 88, 412-419. https://doi.org/10.1093/toxsci/kfi256
[16]
Olyveira, G.M., Costa, L.M.M., Riccardi, C.S., Santos, M.L., Daltro, P.B., Basmaji, P., Daltro, G.C. and Guastaldi, A.C. (2016) Bacterial Cellulose for Advanced Medical Materials. In: Grumezescu, A.M., Ed., Nanobiomaterials in Soft Tissue Engineering, Elsevier, Romania, 57-82. https://doi.org/10.1016/B978-0-323-42865-1.00003-9
[17]
Olyveira, G.M., Santos, M.L., Costa, L.M.M., Daltro, P.B., Basmaji, P., Daltro, G.C. and Guastaldi, A.C. (2014) Bacterial Biocomposites for Guided Tissue Regeneration. Science of Advanced Materials, 6, 2673-2678. https://doi.org/10.1166/sam.2014.1985
[18]
Olyveira, G.M., Santos, M.L., Costa, L.M.M., Daltro, P.B., Basmaji, P., Daltro, G.C. and Guastaldi, A.C. (2015) Physically Modified Bacterial Cellulose Biocomposites for Guided Tissue Regeneration. Science of Advanced Materials, 7, 1657-1664. https://doi.org/10.1166/sam.2015.2283
[19]
Olyveira, G.M., Basmaji, P., Costa, L.M.M., Santos, M.L., Riccardi, C.S., Guastaldi, F.P.S., Scarel-Caminaga, R.M., Oliveira Capote, T.S., Pizoni, E. and Guastaldi, A.C. (2017) Surface Physical Chemistry Properties in Coated Bacterial Cellulose Membranes with Calcium Phosphate. Materials Science & Engineering. C, Materials for Biological Applications, 75, 1359-1365. https://doi.org/10.1016/j.msec.2017.03.025
[20]
Al Mualla, S., Al Nabooda, M., Salman, N., Basmaji, P., De Olyveira, G., Manzine Costa, L., Da Costa Oliveira, J. and Francozo, G. (2018) Special Nanoskin-ACT-Biological Membranes from Deep Wounds. Journal of Biomaterials and Nanobiotechnology, 9, 79-88. https://doi.org/10.4236/jbnb.2018.91007
[21]
M. Kanjou, M., Abdulhakim, H., Olyveira, G. and Basmaji, P. (2019) 3-D Print Celulose Nanoskin: Future Diabetic Wound Healing. Journal of Biomaterials and Nanobiotechnology, 10, 190-195. https://doi.org/10.4236/jbnb.2019.104011
[22]
Basmaji, P. (2020) First Breast Cancer Treatment Naturally by Nanoskin Act. Journal of Biomaterials and Nanobiotechnology, 11, 179-187. https://doi.org/10.4236/jbnb.2020.113011
[23]
El-Hoseny, S., Basmaji, P., Olyveira, G., Costa, L., Alwahedi, A., Oliveira, J. and Francozo, G. (2015) Natural ECM-Bacterial Cellulose Wound Healing—Dubai Study. Journal of Biomaterials and Nanobiotechnology, 6, 237-246. https://doi.org/10.4236/jbnb.2015.64022
[24]
Mualla, S., Farahat, R., Basmaji, P., Olyveira, G., Costa, L., Oliveira, J. and Francozo, G. (2016) Study of Nanoskin ECM-Bacterial Cellulose Wound Healing/United Arab Emirates. Journal of Biomaterials and Nanobiotechnology, 7, 109-117. https://doi.org/10.4236/jbnb.2016.72012
[25]
Basmaji, P., Molina de Olyveira, G. and Kanjou, M. (2021) Skin Cancer Treatment by Nanoskin Cellulose: Future Cancer Wound Healing. Journal of Biomaterials and Nanobiotechnology, 12, 1-6. https://doi.org/10.4236/jbnb.2021.121001
[26]
Basmaji, P., Martins, V. and Kanjo, M. (2020) Natural Nanoskin ACT Management of the Rare Disease as Burnt Patient with Epidermolysis Bullosa and Stevens-Johnson. Journal of Biomaterials and Nanobiotechnology, 11, 188-194. https://doi.org/10.4236/jbnb.2020.113012
[27]
Viveiros, M.M.H., Rainho, C.A., Ramirez, J.A.Z., Kaneno, R., Silva, M.G., Ximenes, V.F., de Olyveira, G.M., Basmaji, P., Di Girolamo, N. and Schellini, S.A. (2022) Physical, Functional and Biochemical Features of Nanoskin® Bacterial Cellulose Scaffold as a Potential Carrier for Cell Transference. Materials Letters Part A, 308, Article ID: 131109. https://doi.org/10.1016/j.matlet.2021.131109
[28]
Ji, J.H., Jung, J.H., Kim, S.S., Yoon, J.U., Park, J.D., Choi, B.S., Chung, Y.H., Kwon, I.H., Jeong, J., Han, B.S., Shin, J.H., Sung, J.H., Song, K.S., Yu, I.J. (2007) Twenty-Eight-Day Inhalation Toxicity Study of Silver Nanoparticles in Sprague-Dawley Rats. Inhalation Toxicology, 19, 857-871. https://doi.org/10.1080/08958370701432108
[29]
El-Ansary, A. and Al-Daihan, S. (2009) On the Toxicity of Therapeutically Used Nanoparticles: An Overview. Journal of Toxicology, 2009, Article ID: 754810. https://doi.org/10.1155/2009/754810
[30]
Oberdörster, G., Oberdörster, E. and Oberdörster, J. (2005) Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives, 113, 823-839. https://doi.org/10.1289/ehp.7339
[31]
Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H. (2005) Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Particle and Fibre Toxicology, 2, 8-43. https://doi.org/10.1186/1743-8977-2-8
[32]
Oberdörster, G., Stone, V. and Donaldson, K. (2007) Toxicology of Nanoparticles: A Historical Perspective. Nanotoxicology, 1, 2-25. https://doi.org/10.1080/17435390701314761
[33]
Hagens, W.I., Oomen, A.G., de Jong, W.H., Cassee, F.R. and Sips, A.J.A.M. (2007) What Do We (Need to) Know about the Kinetic Properties of Nanoparticles in the Body? Regulatory Toxicology and Pharmacology, 49, 217-229. https://doi.org/10.1016/j.yrtph.2007.07.006
[34]
Moghimi, S.M., Hunter, A.C. and Murray, J.C. (2005) Nanomedicine: Current Status and Future Prospects. FASEB Journal, 19, 311-330. https://doi.org/10.1096/fj.04-2747rev
[35]
Trop, M., Novak, M., Rodl, S., Hellbom, B., Kroell, W. and Goessler, W. (2006) Silver-Coated Dressing Acticoat Caused Raised Liver Enzymes and Argyria-Like Symptoms in Burn Patient. The Journal of Trauma, 60, 648-652. https://doi.org/10.1097/01.ta.0000208126.22089.b6
[36]
Dockery, D.W., Luttmann-Gibson, H., Rich, D.Q., Link, M.S., Mittleman, M.A., Gold, D.R., Koutrakis, P., Schwartz, J.D. and Verrier, R.L. (2005) Association of Air Pollution with Increased Incidence of Ventricular Tachyarrhythmias Recorded by Implanted Cardioverter Defibrillators. Environmental Health Perspectives, 113, 670-674. https://doi.org/10.1289/ehp.7767
[37]
Donaldson, K., Stone, V., Tran, C., Kreyling, W. and Borm, P.J.A. (2004) Nanotoxicology. Occupational and Environmental Medicine, 61, 727-728. https://doi.org/10.1136/oem.2004.013243
[38]
Shah, C.P. (2007) Public Health and Preventive Medicine in Canada. University of Toronto Press, Toronto.
[39]
Vermylen, J., Nemmar, A., Nemery, B. and Hoylaerts, F. (2005) Ambient Air Pollution and Acute Myocardial Infarction. Journal of Thrombosis and Haemostasis, 3, 1955-1961. https://doi.org/10.1111/j.1538-7836.2005.01471.x
[40]
Peters, A. (2005) Particulate Matter and Heart Disease: Evidence from Epidemiological Studies. Toxicology and Applied Pharmacology, 207, S477-S482. https://doi.org/10.1016/j.taap.2005.04.030
[41]
Chen, H.W., Su, S.F., Chien, C.T., Lin, W.H., Yu, S.L., Chou, C.C., Chen, J.J. and Yang, P.C. (2006) Titanium Dioxide Nanoparticles Induce Emphysema-Like Lung Injury in Mice. The FASEB Journal, 20, 2393-2395. https://doi.org/10.1096/fj.06-6485fje
[42]
Chen, J., Tan, M., Nemmar, A., Song, W., Dong, M., Zhang, G. and Li, Y. (2006) Quantification of Extrapulmonary Translocation of Intratracheal-Instilled Particles in Vivo in Rats: Effect of Lipopolysaccharide. Toxicology, 222, 195-201. https://doi.org/10.1016/j.tox.2006.02.016
[43]
Supp, A.P., Neely, A.N., Supp, D.M., Warden, G.D. and Boyce, S.T. (2005) Evaluation of Cytotoxicity and Antimicrobial Activity of Acticoat® Burn Dressing for Management of Microbial Contamination in Cultured Skin Substitutes Grafted to Athymic Mice. Journal of Burn Care & Rehabilitation, 26, 238-246.
[44]
Wright, J.B., Lam, K., Buret, A.G., Olson, M.E. and Burrell, R.E. (2002) Early Healing Events in a Porcine Model Contaminated Wounds: Effects of Nanocrystalline Silver on Matrix Metalloproteinases, Cell Apoptosis, and Healing. Wound Repair and Regeneration, 10, 141-151. https://doi.org/10.1046/j.1524-475X.2002.10308.x
[45]
Paddle-Ledinek, J.E., Nasa, Z. and Cleland, H.J. (2006) Effect of Different Wound Dressings on Cell Viability and Proliferation. Plastic and Reconstructive Surgery, 117, 110S-118S. https://doi.org/10.1097/01.prs.0000225439.39352.ce
[46]
Wijnhoven, S.W.P., Peijnenburg, W.J.G.M., Herberts, C.A., Hagens, W.I., Oomen, A.G., Heugens, E.H.W., Roszek, B., Bisschops, J., Gosens, I., van de Meent, D., Dekkers, S., de Jong, W.H., van Zijverden, M., Sips, A.J.A.M. and Geertsma, R.E. (2009) Nanosilver—A Review of Available Data and Knowledge Gaps in Human and Environmental Risk Assessment. Nanotoxicology, 3, 109-138. https://doi.org/10.1080/17435390902725914
[47]
Kim, W.-Y., Kim, J., Park, J.D., Ryu, H.Y. and Yu, I.J. (2009) Histological Study of Gender Differences in Accumulation of Silver Nanoparticles in Kidneys of Fischer 344 Rats. Journal of Toxicology and Environmental Health, Part A, 72, 1279-1284. https://doi.org/10.1080/15287390903212287
[48]
Kim, Y.S., Kim, J.S., Cho, H.S., Rha, D.S., Kim, J.M., Park, J.D., Choi, B.S., Lim, R., Chang, H.K., Chung, Y.H., Kwon, I.H., Jeong, J., Han, B.S. and Yu, I.J. (2008) Twenty-Eight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of Silver Nanoparticles in Sprague-Dawley Rats. Inhalation Toxicology, 20, 575-583. https://doi.org/10.1080/08958370701874663
[49]
Holt, K.B. and Bard, A.J. (2005) Interaction of Silver (I) Ions with the Respiratory Chain of Escherichia coli: An Electrochemical and Scanning Electrochemical Microscopy Study of the Antimicrobial Mechanism of Micromolar Ag+. Biochemistry, 44, 13214-13223. https://doi.org/10.1021/bi0508542
[50]
Muangman, P., Chuntrasakul, C., Silthram, S., Suvanchote, S., Benjathanung, R., Kittidacha, S. and Rueksomtawin, S. (2006) Comparison of Efficacy of 1% Silver Sulfadiazine and Acticoat™ for Treatment of Partial-Thickness Burn Wounds. Journal of the Medical Association of Thailand, 89, 953-958.
[51]
Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., Tam, P.K.-H., Chiu, J.-F. and Che, C.-M. (2006) Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. Journal of Proteome Research, 5, 916-924. https://doi.org/10.1021/pr0504079
[52]
Zeiri, I., Bronk, B.V., Shabtai, Y., Eichler, J. and Efrima, S. (2004) Surface Enhanced Raman Spectroscopy as a Tool for Probing Specific Biochemical Components in Bacteria. Applied Spectroscopy, 58, 33-40. https://doi.org/10.1366/000370204322729441
[53]
Kaminagakura, K.L.N., Sue Sato, S., Sugino, P., Kataki de Oliveira Veloso, L., dos Santos, D.C., Padovani, C.R., Basmaji, P., Olyveira, G. and Schellini, S.A. (2018) Nanoskin® to Treat Full Thickness Skin Wounds. Journal of Biomedical Materials Research Part B—Applied Biomaterials, 107, 724-732. https://doi.org/10.1002/jbm.b.34166