全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Prebiotic Effect of Triple Biotic Technology on Skin Health

DOI: 10.4236/jcdsa.2021.114025, PP. 304-319

Keywords: Triple Biotic Technology, Prebiotics, Postbiotics, Skin Microbiome, Skin Barrier

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective: Pre-, pro- and postbiotics are becoming more prevalent as ingredients in cosmetic and personal care products. A novel triple biotic technology has been developed and investigated for its impact on skin flora and skin barrier properties. Methods: Growth inhibition/promotion assay was performed to determine the effect on skin bacteria growth, using Escherichia coli, Corynebacterium striatum, Staphylococcus aureus, and Staphylococcus epidermidis. A skin penetration assay and skin barrier biomarker measurements were performed using an ex vivo human skin explant model. The triple-biotic complex of inulin, 2-butyloctanol, and a biomimic blend of postbiotics was tested individually as well as part of cosmetic formulations. Results: The triple-biotic technology, either as individual components or in a cosmetic formulation, inhibited the growth of undesirable bacteria, in most cases. On the other hand, the growth of desirable bacteria was either promoted or maintained. The cosmetic formulations with the triple-biotic technology demonstrated an enhanced skin barrier and an increase in skin barrier biomarkers. Conclusion: A novel triple-biotic technology has been developed and shown to deliver a strong prebiotic effect with demonstrable benefits on bacterial growth, skin barrier properties, and the production of skin barrier biomarkers. This study indicates that triple-biotic technology can be used as a desirable prebiotic ingredient in personal care products to provide skin health benefits.

References

[1]  Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K. and Reid, G. (2017) Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491-502.
https://doi.org/10.1038/nrgastro.2017.75
[2]  Sousa, V., Santos, E. and Sgarbieri, V. (2011) The Importance of Prebiotics in Functional Foods and Clinical Practice. Food and Nutrition Sciences, 2, 133-144.
https://doi.org/10.4236/fns.2011.22019
[3]  Al-Ghazzewi, F.H. and Tester, R.F. (2014) Impact of Prebiotics and Probiotics on Skin Health. Beneficial Microbes, 5, 99-107. https://doi.org/10.3920/BM2013.0040
[4]  Bustamante, M., Oomah, B.D., Oliveira, W.P., Burgos-Díaz, C., Rubilar, M. and Shene, C. (2020) Probiotics Ad Prebiotics Potential for the Care of Skin, Female Urogenital Tract, and Respiratory Tract. Folia Microbiologica (Praha), 65, 245-264.
https://doi.org/10.1007/s12223-019-00759-3
[5]  Lolou, V. and Panayiotidis, M.I. (2019) Functional Role of Probiotics and Prebiotics on Skin Health and Disease. Fermentation, 5, Article No. 41.
https://doi.org/10.3390/fermentation5020041
[6]  Maguire, M. and Maguire, G. (2017) The Role of Microbiota, and Probiotics and Prebiotics in Skin Health. Archives of Dermatological Research, 309, 411-421.
https://doi.org/10.1007/s00403-017-1750-3
[7]  Ouwehand, A., Lahtinen, S. and Tiihonen, K. (2017) The Potential of Probiotics and Prebiotics for Skin Health. In: Farage, M.A., Miller, K.W. and Maibach, H.I., Eds., Textbook of Aging Skin, Springer, Berlin, 1299-1313.
https://doi.org/10.1007/978-3-662-47398-6_77
[8]  Nizioł-Łukaszewska, Z., Bujak, T., Wasilewski, T. and Szmuc, E. (2019) Inulin as an Effectiveness and Safe Ingredient in Cosmetics. Polish Journal of Chemical Technology, 21, 44-49. https://doi.org/10.2478/pjct-2019-0008
[9]  Wilson, B. and Whelan, K. (2017) Prebiotic Inulin-Type Fructans and Galacto-Oligosaccharides: Definition, Specificity, Function, and Application in Gastrointestinal Disorders. Journal of Gastroenterology and Hepatology, 32, 64-68.
https://doi.org/10.1111/jgh.13700
[10]  Di Lodovico, S., Gasparri, F., Di Campli, E., Di Fermo, P., D’Ercole, S., Cellini, L. and Di Giulio, M. (2021) Prebiotic Combinations Effects on the Colonization of Staphylococcal Skin Strains. Microorganisms, 9, Article No. 37.
https://doi.org/10.3390/microorganisms9010037
[11]  Collins, S. and Reid, G. (2016) Distant Site Effects of Ingested Prebiotics. Nutrients, 8, Article No. 523. https://doi.org/10.3390/nu8090523
[12]  Li, M., Truong, K., Pillai, S., Boyd, T. and Fan, A. (2021) The Potential Prebiotic Effect of 2-Butyloctanol on Human Axillary Microbiome. International Journal of Cosmetic Science. https://doi.org/10.1111/ics.12738
[13]  Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C. and Sanders, M.E. (2014) Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506-514.
https://doi.org/10.1038/nrgastro.2014.66
[14]  Callewaert, C., Knödlseder, N., Karoglan, A., Güell, M. and Paetzold, B. (2021) Skin Microbiome Transplantation and Manipulation: Current State of the Art. Computational and Structural Biotechnology Journal, 19, 624-631.
https://doi.org/10.1016/j.csbj.2021.01.001
[15]  Wegh, C.A.M., Geerlings, S.Y., Knol, J., Roeselers, G. and Belzer, C. (2019) Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. International Journal of Molecular Sciences, 20, Article No. 4673.
https://doi.org/10.3390/ijms20194673
[16]  Guéniche, A., Bastien, P., Ovigne, J.M., Kermici, M., Courchay, G., Chevalier, V., Breton, L. and Castiel-Higounenc, I. (2010) Bifidobacterium longum Lysate, a New Ingredient for Reactive Skin. Experimental Dermatology, 19, e1-e8.
https://doi.org/10.1111/j.1600-0625.2009.00932.x
[17]  Peral, M.C., Martinez, M.A. and Valdez, J.C. (2009) Bacteriotherapy with Lactobacillus plantarum in Burns. International Wound Journal, 6, 73-81.
https://doi.org/10.1111/j.1742-481X.2008.00577.x
[18]  Jeong, K., Kim, M., Jeon, S.A., Kim, Y.H. and Lee, S. (2020) A Randomized Trial of Lactobacillus rhamnosus IDCC 3201 Tyndallizate (RHT3201) for Treating Atopic Dermatitis. Pediatric Allergy and Immunology, 31, 783-792.
https://doi.org/10.1111/pai.13269
[19]  Gao, J., Li, Y., Wan, Y., Hu, T., Liu, L., Yang, S., Gong, Z., Zeng, Q., Wei, Y., Yang, W., Zeng, Z., He, X., Huang, S.H. and Cao, H. (2019) A Novel Postbiotic from Lactobacillus rhamnosus GG with a Beneficial Effect on Intestinal Barrier Function. Frontiers in Microbiology, 10, Article No. 477.
https://doi.org/10.3389/fmicb.2019.00477
[20]  Parlet, C.P., Brown, M.M. and Horswill, A.R. (2019) Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. Trends in Micro-biology, 27, 497-507. https://doi.org/10.1016/j.tim.2019.01.008
[21]  Christensen, G.J.M. and Brüggemann, H. (2014) Bacterial Skin Commensals and Their Role as Host Guardians. Beneficial Microbes, 5, 201-215.
https://doi.org/10.3920/BM2012.0062
[22]  Brown, M.M. and Horswill, A.R. (2020) Staphylococcus epidermidis-Skin Friend or Foe? PLOS Pathogens, 16, e1009026. https://doi.org/10.1371/journal.ppat.1009026
[23]  Becker, R.E. and Bubeck Wardenburg, J. (2015) Staphylococcus aureus and the Skin: A Longstanding and Complex Interaction. Skinmed, 13, 111-119.
[24]  Geoghegan, J.A., Irvine, A.D. and Foster, T.J. (2018) Staphylococcus aureus and Atopic Dermatitis: A Complex and Evolving Relationship. Trends in Microbiology, 26, 484-497. https://doi.org/10.1016/j.tim.2017.11.008
[25]  Fujii, T., Inoue, S., Kawai, Y., Tochio, T. and Takahashi, K. (2021) Suppression of Axillary Odor and Control of Axillary Bacterial Flora by Erythritol. Journal of Cosmetic Dermatology. https://doi.org/10.1111/jocd.14201
[26]  Ranjan, A., Shaik, S., Nandanwar, N., Hussain, A., Tiwari, S.K., Semmler, T., Jadhav, S., Wieler, L.H., Alam, M., Colwell, R.R. and Ahmed, N. (2017) Comparative Genomics of Escherichia coli Isolated from Skin and Soft Tissue and Other Extraintestinal Infections. mBio, 8, e01070-17. https://doi.org/10.1128/mBio.01070-17
[27]  Puebla-Barragan, S. and Reid, G. (2021) Probiotics in Cosmetic and Personal Care Products: Trends and Challenges. Molecules, 26, Article No. 1249.
https://doi.org/10.3390/molecules26051249
[28]  Muizzuddin, N., Maher, W., Sullivan, M., Schnittger, S. and Mammone, T. (2012) Physiological Effect of a Probiotic on Skin. Journal of Cosmetic Science, 63, 385-395.
[29]  Hardings, C.R. and Rawlings, A.V. (2006) Effects of Natural Moisturizing Factor and Lactic Acid Isomers on Skin Function. In: Loden, M. and Maibach, H.I., Eds., Dry Skin and Moisturizers: Chemistry and Function, 2nd Edition, CRC Press, Boca Raton, 187-209.
[30]  Nakagawa, N., Sakai, S., Matsumoto, M., Yamada, K., Nagano, M., Yuki, T., Sumida, Y. and Uchiwa, H. (2004). (2004) Relationship between NMF (Lactate and Potassium) Content and the Physical Properties of the Stratum Corneum in Healthy Subjects. Journal of Investigative Dermatology, 122, 755-763.
https://doi.org/10.1111/j.0022-202X.2004.22317.x
[31]  Liu-Walsh, F., Tierney, N.K., Hauschild, J., Rush, A.K., Masucci, J., Leo, G.C. and Capone, K.A. (2021) Prebiotic Colloidal Oat Supports the Growth of Cutaneous Commensal Bacteria Including S. epidermidis and Enhances the Production of Lactic Acid. Clinical, Cosmetic and Investigational Dermatology, 14, 73-82.
https://doi.org/10.2147/CCID.S253386
[32]  Kontochristopoulos, G. and Platsidaki, E. (2017) Chemical Peels in Active Acne and Acne Scars. Clinics in Dermatology, 35, 179-182.
https://doi.org/10.1016/j.clindermatol.2016.10.011
[33]  Berardesca, E., Cameli, N., Primavera, G. and Carrera, M. (2006) Clinical and Instrumental Evaluation of Skin Improvement after Treatment with a New 50% Pyruvic Acid Peel. Dermatologic Surgery, 32, 526-531.
https://doi.org/10.1111/j.1524-4725.2006.32106.x
[34]  Wong, C., Chang, T., Yang, H. and Cui, M. (2015) Antibacterial Mechanism of Lactic Acid on Physiological and Morphological Properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogene. Food Control, 47, 231-236.
https://doi.org/10.1016/j.foodcont.2014.06.034
[35]  Chilicka, K., Rogowska, A.M., Szyguła, R., Dzieńdziora-Urbińska, I. and Taradaj, J. (2020) A Comparison of the Effectiveness of Azelaic and Pyruvic Acid Peels in the Treatment of Female Adult Acne: A Randomized Controlled Trial. Scientific Reports, 10, Article No. 12612. https://doi.org/10.1038/s41598-020-69530-w
[36]  Capone, K., Kirchner, F., Klein, S.L. and Tierney, N.K. (2020) Effects of Colloidal Oatmeal Topical Atopic Dermatitis Cream on Skin Microbiome and Skin Barrier Properties. Journal of Drugs in Dermatology, 19, 524-531.
https://doi.org/10.36849/JDD.2020.4924
[37]  Butler, é., Lundqvist, C. and Axelsson, J. (2020) Lactobacillus reuteri DSM 17938 as a Novel Topical Cosmetic Ingredient: A Proof of Concept Clinical Study in Adults with Atopic Dermatitis. Microorganisms, 8, Article No. 1026.
https://doi.org/10.3390/microorganisms8071026
[38]  Jung, Y.-O., Jeong, H., Cho, Y., Lee, E.-O., Jang, H.-W., Kim, J., Nam, K.T. and Lim, K.-M. (2019) Lysates of a Probiotic, Lactobacillus rhamnosus, Can Improve Skin Barrier Function in a Reconstructed Human Epidermis Model. International Journal of Molecular Sciences, 20, Article No. 4289. https://doi.org/10.3390/ijms20174289
[39]  Armengto-Carbo, M., Hernandez-Martin, A. and Torrelo, A. (2015) The Role of Filaggrin in the Skin Barrier and Disease Development. Actas Dermo-Sifiliográficas, 106, 86-95. https://doi.org/10.1016/j.adengl.2014.12.007
[40]  Kezic, S. and Jakasa, I. (2016) Filaggrin and Skin Barrier Function. In: Agner, T., Ed., Skin Barrier Function: Current Problems in Dermatology, Vol. 49, Karger, Basel, 1-7. https://doi.org/10.1159/000441539
[41]  Future, M. (2020) Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. International Journal of Molecular Sciences, 21, Article No. 5382.
https://doi.org/10.3390/ijms21155382
[42]  Garrod, D. and Chidgey, M. (2008) Desmosome Structure, Composition, and Function. Biochimica et Biophysica Acta—Biomembranes, 1778, 572-587.
https://doi.org/10.1016/j.bbamem.2007.07.014
[43]  Batista, D.I., Perez, L., Orfali, R.L., Zaniboni, M.C., Samorano, L.P., Pereira, N.V., Sotto, M.N., Ishizaki, A.S., Oliveira, L.M., Sato, M.N. and Aoki, V. (2015) Profile of Skin Barrier Proteins (Filaggrin, Claudins 1 and 4) and Th1/Th2/Th17 Cytokines in Adults with Atopic Dermatitis. The Journal of the European Academy of Dermatology and Venereology, 29, 1091-1095. https://doi.org/10.1111/jdv.12753

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133