|
Bioprocess 2021
超声波在生物材料中的应用
|
Abstract:
超声波作为一种声能因为其特殊的理化效应,在医学等各个领域中有着广泛的应用。超声波由于其波长短、各向异性的声能,在介质中的传播性好,方向性强且能量大。近年来,超声波在生物材料领域的应用也越来越多。利用超声波可以制造出各种各样特定尺寸和结构的生物材料。本文综述了超声波产生这些应用的原理,并举例介绍了超声波制备纳米材料的技术、超声成型技术以及超声波在改进材料的生物功能性中的应用。
As a kind of sound energy, ultrasound
has been widely used in various fields, such as medicine because of its special
physical and chemical effects. Because of its short wavelength and anisotropic
sound energy, ultrasonic wave has good propagation, strong directivity and high
energy in medium. In recent years, there have been more and more applications
of ultrasonic in the field of biomaterials. Ultrasound could be used to
fabricate various biological materials with specific sizes and structures. This
paper reviews the principle of ultrasonic generation of these applications, and
introduces the technology of ultrasonic preparation of nano-materials,
ultrasonic molding technology and the application of ultrasonic in improving
the biological function of materials with examples.
[1] | Suslick, K.S. and Flannigan, D.J. (2008) Inside a Collapsing Bubble: Sonoluminescence and the Conditions during Cav-itation. Annual Review of Physical Chemistry, 59, 659-683.
https://doi.org/10.1146/annurev.physchem.59.032607.093739 |
[2] | Flint, E.B. and Suslick, K.S. (1991) The Tem-perature of Cavitation. Science, 253, 1397-1399.
https://doi.org/10.1126/science.253.5026.1397 |
[3] | Xu, H., Eddingsaas, N.C. and Suslick, K.S. (2009) Spatial Separation of Cavitating Bubble Populations: The Nanodroplet Injection Model. Journal of the American Chemical Soci-ety, 131, 6060-6061.
https://doi.org/10.1021/ja900457v |
[4] | Gettle, L.M. and Revzin, M.V. (2020) Innovations in Vascular Ultrasound. Radiologic Clinics of North America, 58, 653-669. https://doi.org/10.1016/j.rcl.2020.03.002 |
[5] | Rajashekharaiah, A.S., Vidya, Y.S., Anantharaju, K.S., Darshan, G.P., Lalitha, P., Sharma, S.C., et al. (2020) Photoluminescence, ther-moluminescence and Photocatalytic Studies of Sonochemical Synthesis of Bi2Zr2O7:Sm3+ Nanomaterials. Journal of Ma-terials Science: Materials in Electronics, 31, 15627-15643.
https://doi.org/10.1007/s10854-020-04126-8 |
[6] | Heredia-Rivera, U., Ferrer, I. and Vazquez, E. (2019) Ultrasonic Molding Technology: Recent Advances and Potential Applications in the Medical Industry. Polymers, 11, Article No. 667. https://doi.org/10.3390/polym11040667 |
[7] | He, S., et al. (2019) Regulating the Differentiation of PC12 by Acoustic Fluid Stimulation. Proceedings of the IEEE International Ultrasonics Symposium (IUS), Glasgow, ENGLAND, 6-9 October 2019. |
[8] | Ouerhani, T., Pflieger, R., Messaoud, W.B. and Nikitenko, S.I. (2015) Spectroscopy of Sono-luminescence and Sonochemistry in Water Saturated with N2-Ar Mixtures. Journal of Physical Chemistry B, 119, 15885-15891.
https://doi.org/10.1021/acs.jpcb.5b10221 |
[9] | Riesz, P., Berdahl, D. and Christman, C.L. (1985) Free Radical Generation by Ultrasound in Aqueous and Nonaqueous Solutions. Environmental Health Perspectives, 64, 233-252. https://doi.org/10.1289/ehp.8564233 |
[10] | Fuentes-Garcia, J.A., Santoyo-Salzar, J., Rangel-Cortes, E., Goya, G.F., Cardozo-Mata, V. and Pescador-Rojas, J.A. (2021) Effect of Ultrasonic Irradiation Power on Sonochemical Synthesis of Gold Nanoparticles. Ultrasonics Sonochemistry, 70, Article ID: 105274. https://doi.org/10.1016/j.ultsonch.2020.105274 |
[11] | Usman, A.I., Aziz, A.A. and Abu Noqta, O. (2019) Green Sonochemical Synthesis of Gold Nanoparticles Using Palm Oil Leaves Extracts. Mater Today: Proceedings, 7, 803-807. https://doi.org/10.1016/j.matpr.2018.12.078 |
[12] | Yusof, N.S.M. and Ashokkumar, M. (2015) Sonochemical Syn-thesis of Gold Nanoparticles by Using High Intensity Focused Ultrasound. ChemPhysChem, 16, 775-781. https://doi.org/10.1002/cphc.201402697 |
[13] | Okitsu, K., Ashokkumar, M. and Grieser, F. (2005) Sonochemical Synthesis of Gold Nanoparticles: Effects of Ultrasound Frequency. Journal of Physical Chemistry B, 109, 20673-20675. https://doi.org/10.1021/jp0549374 |
[14] | Bastami, T.R., Ghaedi, A., Mitchell, S.G., Javadian-Saraf, A. and Karimi, M. (2020) Sonochemical Synthesis of Polyoxometalate-Stabilized Gold Nanoparticles for Point-of-Care Determination of Acetaminophen Levels: Preclinical Study in an Animal Model. RSC Advances, 10, 16805-16816. https://doi.org/10.1039/D0RA00931H |
[15] | Bastami, T.R., Ghaedi, A., Mitchell, S.G., Javadian-Saraf, A. and Karimi, M. (2020) Correction: Sonochemical Synthesis of Polyoxometalate-Stabilized Gold Nanoparticles for Point-of-Care Determination of Acetaminophen Levels: Preclinical Study in an Animal Model. RSC Advances, 10, 18138. https://doi.org/10.1039/D0RA90056G |
[16] | Dheyab, M.A., Aziz, A.A., Jameel, M.S., Khaniabadi, P.M. and Mehrdel, B. (2021) Sonochemical-Assisted Synthesis of Highly Stable Gold Nanoparticles Catalyst for Decoloration of Methylene Blue Dye. Inorganic Chemistry Communications 127, Article ID: 108551. https://doi.org/10.1016/j.inoche.2021.108551 |
[17] | Dheyab, M.A., Aziz, A.A. and Jameel, M.S. (2020) Synthesis and Optimization of the Sonochemical Method for Functionalizing Gold Shell on Fe3O4 Core Nanoparticles Using Re-sponse Surface Methodology. Surfaces and Interfaces, 21, Article ID: 100647. https://doi.org/10.1016/j.surfin.2020.100647 |
[18] | Anandan, S., Grieser, F. and Ashokkumar, M. (2008) Sono-chemical Synthesis of Au-Ag Core-Shell Bimetallic Nanoparticles. Journal of Physical Chemistry C, 112, 15102-15105. https://doi.org/10.1021/jp806960r |
[19] | Kanthale, P.M., Brotchie, A., Ashokkumar, M. and Grieser, F. (2008) Ex-perimental and Theoretical Investigations on Sonoluminescence under Dual Frequency Conditions. Ultrasonics Sono-chemistry, 15, 629-635.
https://doi.org/10.1016/j.ultsonch.2007.08.006 |
[20] | Masuda, N., Maruyama, A., Eguchi, T., Hirakawa, T. and Murakami, Y. (2015) Influence of Microbubbles on Free Radical Generation by Ultrasound in Aqueous Solution: De-pendence of Ultrasound Frequency. Journal of Physical Chemistry B, 119, 12887-12893. https://doi.org/10.1021/acs.jpcb.5b05707 |
[21] | Vinodgopal, K., He, Y., Ashokkumar, M. and Grieser, F. (2006) Sonochemically Prepared Platinum-Ruthenium Bimetallic Nanoparticles. Journal of Physical Chemistry B, 110, 3849-3852. https://doi.org/10.1021/jp060203v |
[22] | Hyeon, T.H., Fang, M.M. and Suslick, K.S. (1996) Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties. Journal of the American Chem-ical Society, 118, 5492-5493. https://doi.org/10.1021/ja9538187 |
[23] | Okitsu, K., Sharyo, K. and Nishimura, R. (2009) One-Pot Synthesis of Gold Nanorods by Ultrasonic Irradiation: The Effect of pH on the Shape of the Gold Na-norods and Nanoparticles. Langmuir, 25, 7786-7790.
https://doi.org/10.1021/la9017739 |
[24] | Zhang, J.L., Du, J., Han, B., Liu, Z., Jiang, T. and Zhang, Z. (2006) Sonochemical Formation of Single-Crystalline Gold Nanobelts. Angewandte Chemie International Edition, 45, 1116-1119. https://doi.org/10.1002/anie.200503762 |
[25] | Sanchez-Iglesias, A., Pastoriza-Santos, I., Pérez-Juste, J., Rodríguez-González, B., García?de?Abajo, F. and Liz-Marzán, L. (2006) Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. Advanced Materials, 18, 2529-2534.
https://doi.org/10.1002/adma.200600475 |
[26] | Jiang, L.P., Xu, S., Zhu, J.-M., Zhang, J.-R., Zhu, J.-J. and Chen, H.-Y. (2004) Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings. Inorganic Chemistry, 43, 5877-5883.
https://doi.org/10.1021/ic049529d |
[27] | Okuyama, K. and Lenggoro, I.W. (2003) Preparation of Nanoparticles via Spray Route. Chemical Engineering Science, 58, 537-547. https://doi.org/10.1016/S0009-2509(02)00578-X |
[28] | Huang, J.H., Ho, W.K. and Lee, F.S.C. (2012) Facile Syn-thesis of Visible-Light-Activated F-Doped TiO2 Hollow Spheres by Ultrasonic Spray Pyrolysis. Science of Advanced Materials, 4, 863-868.
https://doi.org/10.1166/sam.2012.1358 |
[29] | Skrabalak, S.E. and Suslick, K.S. (2005) Porous MoS2 Synthesized by Ultrasonic Spray Pyrolysis. Journal of the American Chemical Society, 127, 9990-9991. https://doi.org/10.1021/ja051654g |
[30] | Mattmann, M., et al. (2021) Thermoset Shape Memory Polymer Variable Stiffness 4D Robotic Catheters. Advanced Science, Weinheim, Baden-Wurttemberg, Germany, e2103277. http://doi.org/10.1002/advs.202103277 |
[31] | Daud, Y., Lucas, M. and Huang, Z.H. (2007) Modelling the Effects of Superimposed Ultrasonic Vibrations on Tension and Compression Tests of Aluminium. Journal of Materials Pro-cessing Technology, 186, 179-190.
https://doi.org/10.1016/j.jmatprotec.2006.12.032 |
[32] | Giboz, J., Copponnex, T. and Mele, P. (2007) Microinjec-tion Molding of Thermoplastic Polymers: A Review. Journal of Micromechanics and Microengineering, 17, R96-R109. https://doi.org/10.1088/0960-1317/17/6/R02 |
[33] | Zeng, K., Wu, X.-Y., Liang, X., Xu, B., Wang, Y.-T., Chen, X.-Q., et al. (2014) Process and Properties of Micro-Ultrasonic Powder Molding with Polypropylene. The International Journal of Advanced Manufacturing Technology, 70, 515-522. https://doi.org/10.1007/s00170-013-5300-7 |
[34] | Liang, X., Wu, X., Xu, B., Ma, J., Liu, Z., Peng, T. and Fu, L. (2016) Phase Structure Development as Preheating UHMWPE Powder Temperature Changes in the Micro-UPM Pro-cess. Journal of Micromechanics and Microengineering, 26, Article ID: 015014. https://doi.org/10.1088/0960-1317/26/1/015014 |
[35] | Liang, X., Li, B., Wu, X., Shi, H., Zeng, K. and Wang, Y. (2013) Micro UHMW-PE Column Array Molded by the Utilization of PCB as Mold Insert. Circuit World, 39, 95-101. https://doi.org/10.1108/03056121311315819 |
[36] | Kellomaki, M. and Tormala, P. (1997) Ultrasonic Moulding of Bioabsorbable Polymers and Polymer/Drug Composites. Journal of Materials Science Letters, 16, 1786-1789. https://doi.org/10.1023/A:1018548130539 |
[37] | Grabalosa, J., Ferrer, I., Martínez-Romero, O., Elías-Zú?iga, A., Plantá, X. and Rivillas, F. (2016) Assessing a Stepped Sonotrode in Ultrasonic Molding Technology. Journal of Materi-als Processing Technology, 229, 687-696.
https://doi.org/10.1016/j.jmatprotec.2015.10.023 |
[38] | Masato, D., Babenko, M., Shriky, B., Gough, T., Lucchetta, G. and Whiteside, B. (2018) Comparison of Crystallization Characteristics and Mechanical Properties of Polypropylene Processed by Ultrasound and Conventional Micro-Injection Molding. The International Journal of Advanced Manufac-turing Technology, 99, 113-125.
https://doi.org/10.1007/s00170-018-2493-9 |
[39] | Garvin, K.A. and VanderBurgh, J. (2013) Controlling Collagen Fiber Microstructure in Three-Dimensional Hydrogels Using Ultrasound. Journal of the Acoustical Society of America, 134, 1491-1502. https://doi.org/10.1121/1.4812868 |
[40] | Garvin, K.A. and Dalecki, D.(2013) Spatial Patterning of Endothelial Cells and Vascular Network Formation Using Ultrasound Standing Wave Fields. Journal of the Acoustical Society of America, 134, 1483-1490.
https://doi.org/10.1121/1.4812867 |
[41] | Chen, J.C., Su, C.-M., Chen, G.-S., Lai, C.-C., Chen, C.-Y., Lin, K.M.-C., et al. (2020) Enhancement of Neurite Outgrowth by Warming Biomaterial Ultrasound Treatment. International Journal of Molecular Sciences, 21, Article No. 2236. https://doi.org/10.3390/ijms21062236 |
[42] | Bai, W.-K., Shen, E. and Hu, B. (2012) Induction of the Apoptosis of Cancer Cell by Sonodynamic Therapy: A Review. Chinese Journal of Cancer Research, 24, 368-373. https://doi.org/10.1007/s11670-012-0277-6 |
[43] | Luo, H., Li, J., Lin, Q., Xiao, X., Shi, Y., Ye, X., et al. (2020) Ultrasonic Irradiation and SonoVue Microbubbles-Mediated RNA Interference Targeting PRR11 Inhibits Breast Cancer Cells Proliferation and Metastasis, but Promotes Apoptosis. Bioscience Reports, 40, Article ID: BSR20201854. https://doi.org/10.1042/BSR20201854 |