全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

优化算法测试函数综述及应用分析
Summary and Application Analysis of Optimization Algorithm Test Function

DOI: 10.12677/CSA.2021.1111267, PP. 2633-2645

Keywords: 差分进化算法,优化算法测试函数,MATLAB
Differential Evolution Algorithm
, Optimization Algorithm Test Function, MATLAB

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以优化算法测试函数为研究对象,以差分进化算法为研究实例,采用图形观察法、模型方法、实验研究法和文献研究法等研究方法,对常见的5种优化算法测试函数的数学原理、函数特征以及使用方法开展研究,包括Ackley函数、Griewank函数、Rastrigin函数、Schaffer函数和Sphere函数。通过学习优化算法测试函数原理和在MATLAB上对差分进化算法进行仿真实验设计,验证其在优化算法改进中的性能评估功能。实验结果表明,优化算法测试函数对算法改良的性能验证具有重要的研究意义。
With optimization algorithm test functions as the research object, and the differential evolution algorithm as the research example, this paper adopts Graphical Observation Method, Model Method, Experimental Research Method and Literature Research Method, etc. in order to test the mathematical principles, function characteristics and usage methods of 5 common optimization algorithms, namely Ackley Function, Griewank Function, Rastrigin Function, Schaffer Function and Sphere Function. Through learning the principles of the optimization algorithm test functions and the simulation experiment designing of the differential evolution algorithm based on MATLAB, the performance verification function in the improvement of the optimization algorithms is verified. The experimental results show that the optimization algorithm test functions have important research significance for the performance verification of the algorithm improvement.

References

[1]  方璐. 大数据时代的科学研究方法[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2014: 1-15.
[2]  冯贵兰, 李正楠, 周文刚. 大数据分析技术在网络领域中的研究综述[J]. 计算机科学, 2019, 46(6): 1-20.
[3]  Cai, W., Yang, L. and Yu, Y. (2020) Solution of Ackley Function Based on Particle Swarm Optimization Algorithm. Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, 25-27 August 2020, 563-566.
https://doi.org/10.1109/AEECA49918.2020.9213634
[4]  Cho, H., Olivera, F. and Guikema, S.D. (2008) A Derivation of the Number of Minima of the Griewank Function. Applied Mathematics and Computation, 204, 694-701.
https://doi.org/10.1016/j.amc.2008.07.009
[5]  Tauritz, D. (2008) CS348 FS2008—Assignment 2 Minimizing the Generalized Rastrigin Function with Adaptive Mutation Step Control. Citeseer, Princeton.
[6]  Jiang, W., Qian, C. and Tang, K. (2018) Improved Running Time Analysis of the (1+1)-ES on the Sphere Function. International Conference on Intelligent Computing 2018, Wuhan, 15-18 August 2018, 729-739.
https://doi.org/10.1007/978-3-319-95930-6_74
[7]  宋江迪. 群智能算法及其在全局函数优化中的应用研究[D]: [硕士学位论文]. 鞍山: 辽宁科技大学, 2016: 103-106.
[8]  王冰. 基于局部最优解的改进人工蜂群算法[J]. 计算机应用研究, 2014, 31(4): 1023-1026.
[9]  Huang, Y., Li, J.P. and Wang, P. (2019) Unusual Phenomenon of Op-timizing the Griewank Function with the Increase of Dimension. Frontiers of Information Technology & Electronic En-gineering, 20, 1344-1360.
https://doi.org/10.1631/FITEE.1900155
[10]  Kanwal, M.S., Ramesh, A.S. and Huang, L.A. (2013) Accuracies, Run Times, and Statistics for Search Algorithms Minimizing the Rastrigin Function. Computer Science, 2, 1-4.
[11]  张勇, 夏树发, 唐冬生. 果蝇优化算法对多峰函数求解性能的仿真研究[J]. 暨南大学学报(自然科学与医学版), 2014, 35(1): 82-87.
[12]  Price, K.V., Storn, R.M., Lampinen, J.A. (2017) Differential Evolution: A Practical Approach to Global Optimization. Chinese Machine Press, Beijing.
[13]  丁青锋, 尹晓宇. 差分进化算法综述[J]. 智能系统学报, 2017, 12(4): 431-442.
[14]  Song, E. and Li, H. (2021) A Self-Adaptive Differential Evolution Algorithm Using Oppositional Solutions and Elitist Sharing. IEEE Access, 9, 20035-20050.
https://doi.org/10.1109/ACCESS.2021.3051264
[15]  Das, S., Suganthan, P.N. (2011) Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation, 15, 4-31.
https://doi.org/10.1109/TEVC.2010.2059031

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133