全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

污染水体中磷元素在底泥–水体中的迁移转化
Migration and Transformation of Phosphorus in Polluted Water in Sediment-Water

DOI: 10.12677/HJAS.2021.1111130, PP. 974-979

Keywords: 富营养化,磷元素,迁移转化
Eutrophication
, Phosphorus, Migration and Transformation

Full-Text   Cite this paper   Add to My Lib

Abstract:

水体污染是目前城市典型的环境问题之一,这严重影响城乡居民的生活质量。长期富营养化水体中的底泥极易产生磷元素的再次释放而造成二次污染的现象。在有效阻断、控制外源污染释放源头的同时,应关注内源污染物质的二次释放问题。分析富营养化污染水体–底泥中磷元素迁移转化的内在机理及形成的规律,有利于控制磷元素的二次污染,为水体的生态修复技术在污水治理工程中进行更广范围的应用推广,实现水体的可持续生态洁净。
Water pollution is currently one of the typical environmental problems in cities, which seriously af-fects the quality of life of urban and rural residents. The sediment in the long-term eutrophic water body is very easy to produce the re-release of the phosphorus element and cause the phenomenon of secondary pollution. While effectively blocking and controlling the source of exogenous pollution release, attention should be paid to the secondary release of endogenous pollutants. Eutrophication polluted water-the internal mechanism of the migration and transformation of phosphorus in sediments and the law of formation are analyzed. This is conducive to controlling the secondary pollution of phosphorus. The ecological restoration technology for water bodies is widely applied and promoted in sewage treatment projects.

References

[1]  Tang, Q.H., Peng, L., Yang, Y., et al. (2019) Total Phosphorus-Precipitation and Chlorophyll a-Phosphorus Relation-ships of Lakes and Reservoirs Mediated by Soil Iron at Regional Scale. Water Research, 154, 136-143.
https://doi.org/10.1016/j.watres.2019.01.038
[2]  吴桢, 吴思枫, 刘永, 等. 湖泊氮磷循环的关键过程与定量识别方法[J]. 北京大学学报(自然科学版), 2018, 54(1): 218-228.
[3]  王岩, 姜霞, 李永峰, 等. 洞庭湖氮磷时空分布与水体营养状态特征[J]. 环境科学研究, 2014, 27(5): 484-491.
[4]  Muller, S., Mitrovic, S.M. and Baldwin, D.S. (2016) Oxygen and Dissolved Organic Carbon Control Release of N, P and Fe from the Sediments of Shallow Polymictic Lake. Journal of Soils and Sediment, 16, 1109-1120.
https://doi.org/10.1007/s11368-015-1298-9
[5]  Wu, T.F., Qin, B.Q., Brookes, D.J., et al. (2019) Spatial Distri-bution of Sediment Nitrogen and Phosphorus in Lake Taihu from a Hydrodynamics-Induced Transport Perspective. Sci-ence of the Total Environment, 650, 1554-1565.
https://doi.org/10.1016/j.scitotenv.2018.09.145
[6]  陈建民, 李东灵, 肖合顺, 郑义团, 陈宝明. 城市黑臭河道底泥内源污染控制的固化与稳定化技术[J]. 净水技术, 2020, 39(8): 154-159+166.
[7]  孙远军, 卢士强, 邵一平, 等. 影响底泥磷营养盐释放的因素分析及控制技术研究综述[J]. 上海环境科学集, 2014, 33(2): 58-62.
[8]  崔虎, 王莉霞, 欧洋, 阎百兴, 韩露, 李迎新. 湿地生态系统磷迁移转化机制研究进展[J]. 水生态学杂志, 2020, 41(2): 105-112.
[9]  周健, 李春辉, 张志永, 等. 淹水落干下三峡水库消落带土壤无机磷形态转化特征[J]. 环境科学, 2018, 39(1): 130-136.
[10]  梁晓倩. 入海河流水体和沉积物氮磷迁移转化机制研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2019.
[11]  金晶, 高扬, 王洋, 等. 土—水界面磷的稳定性与生物有效性对水体富营养化的影响[J]. 绿色科技, 2018(4): 60-65.
[12]  邢雅囡, 阮晓红, 赵振华. 城市重污染河道环境因子对底质氮释放影响[J]. 水科学进展, 2010, 21(1): 120-126.
[13]  龚春生, 范成新. 不同溶解氧水平下湖泊底泥-水界面磷交换影响因素分析[J]. 湖泊科学, 2010, 22(3): 430-436.
[14]  Sondergaard, M., Windolf, J. and Jeppesen, E. (1996) Phosphorus Fractions and Profiles in the Sediment of Shallow Danish Lakes as Related to Phosphorus Load, Sediment Composition and Lake Chemistry. Water Research, 30, 992-1002.
https://doi.org/10.1016/0043-1354(95)00251-0
[15]  Roy, E.D., Nguyen, N.T., Bargu, S., et al. (2012) Internal Loading of Phosphorus from Sediments of Lake Pontchartrain (Louisiana, USA) with Implications for Eutrophication. Hydrobiologia, 684, 69-82.
https://doi.org/10.1007/s10750-011-0969-9
[16]  周骏, 陈小兰, 李松, 等. 典型山区轻度营养型水库底泥氮磷释放规律[J]. 青岛科技大学学报(自然科学版), 2018, 39(1): 65-72, 79.
[17]  王建军, 沈吉, 张路, 等. 云南滇池和抚仙湖沉积物-水界面营养盐通量及氧气对其的影响[J]. 湖泊科学, 2010, 22(5): 640-648.
[18]  邰子秋. 典型富营养化湖泊沉积物中不同磷形态的迁移转化研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2020.
[19]  Kaiserli, A., Voutsa, D. and Samara, C. (2002) Phosphorus Fractionation in Lake Sediments–Lakes Volvi and Koronia, N. Greece. Chemosphere, 46, 1147-1155.
https://doi.org/10.1016/S0045-6535(01)00242-9
[20]  Gonsiorczyk, T., Casper, P. and Koschel, R. (1998) Phos-phorus-Binding Forms in the Sediment of an Oligotrophic and an Eutrophic Hard Water Lake of the Baltic Lake District (Germany). Water Science and Technology, 37, 51-58.
https://doi.org/10.2166/wst.1998.0173
[21]  Rydin, E. (2000) Potentially Mobile Phosphorus in Lake Erken Sedi-ment. Water Research, 34, 2037-2042.
https://doi.org/10.1016/S0043-1354(99)00375-9
[22]  Schindler, D.W., Carpenter, S.R., Chapra, S.C., et al. (2016) Reducing Phosphorus to Curb Lake Eutrophication Is a Success. Environmental Science & Technology, 50, 8923-8929.
https://doi.org/10.1021/acs.est.6b02204
[23]  尹大强, 覃秋荣, 阎航. 环境因子对五里湖沉积物磷释放的影响[J]. 湖泊科学, 1994(3): 240-244.
[24]  揣小明, 杨柳燕, 程书波, 等. 太湖和呼伦湖沉积物对磷的吸附特征及影响因素[J]. 环境科学, 2014, 35(3): 951-957.
[25]  Bjorn, A.L., Coolidge, K.M., Norton, S.A., et al. (2006) Norton, Aria Amirbahman Factors Contributing to the Internal Loading of Phosphorus from Anoxic Sediments in Six Maine, USA, lakes. Science of the Total Environment, 373, 534-541.
https://doi.org/10.1016/j.scitotenv.2006.12.021
[26]  杨赵. 湖泊沉积物中氮磷源——汇现象影响因素研究进展 [J]. 环境科学导刊, 2017, 36(S1): 16-19.
[27]  Froelich, P.N. (1988) Kinetic Control of Dissolved Phosphate in Natural Rivers and Estuaries: A Primer on the Phosphate Buffer Mechanism. Limnology and Oceanography, 33, 649-668.
https://doi.org/10.4319/lo.1988.33.4part2.0649

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133