|
污染水体中磷元素在底泥–水体中的迁移转化
|
Abstract:
[1] | Tang, Q.H., Peng, L., Yang, Y., et al. (2019) Total Phosphorus-Precipitation and Chlorophyll a-Phosphorus Relation-ships of Lakes and Reservoirs Mediated by Soil Iron at Regional Scale. Water Research, 154, 136-143.
https://doi.org/10.1016/j.watres.2019.01.038 |
[2] | 吴桢, 吴思枫, 刘永, 等. 湖泊氮磷循环的关键过程与定量识别方法[J]. 北京大学学报(自然科学版), 2018, 54(1): 218-228. |
[3] | 王岩, 姜霞, 李永峰, 等. 洞庭湖氮磷时空分布与水体营养状态特征[J]. 环境科学研究, 2014, 27(5): 484-491. |
[4] | Muller, S., Mitrovic, S.M. and Baldwin, D.S. (2016) Oxygen and Dissolved Organic Carbon Control Release of N, P and Fe from the Sediments of Shallow Polymictic Lake. Journal of Soils and Sediment, 16, 1109-1120.
https://doi.org/10.1007/s11368-015-1298-9 |
[5] | Wu, T.F., Qin, B.Q., Brookes, D.J., et al. (2019) Spatial Distri-bution of Sediment Nitrogen and Phosphorus in Lake Taihu from a Hydrodynamics-Induced Transport Perspective. Sci-ence of the Total Environment, 650, 1554-1565.
https://doi.org/10.1016/j.scitotenv.2018.09.145 |
[6] | 陈建民, 李东灵, 肖合顺, 郑义团, 陈宝明. 城市黑臭河道底泥内源污染控制的固化与稳定化技术[J]. 净水技术, 2020, 39(8): 154-159+166. |
[7] | 孙远军, 卢士强, 邵一平, 等. 影响底泥磷营养盐释放的因素分析及控制技术研究综述[J]. 上海环境科学集, 2014, 33(2): 58-62. |
[8] | 崔虎, 王莉霞, 欧洋, 阎百兴, 韩露, 李迎新. 湿地生态系统磷迁移转化机制研究进展[J]. 水生态学杂志, 2020, 41(2): 105-112. |
[9] | 周健, 李春辉, 张志永, 等. 淹水落干下三峡水库消落带土壤无机磷形态转化特征[J]. 环境科学, 2018, 39(1): 130-136. |
[10] | 梁晓倩. 入海河流水体和沉积物氮磷迁移转化机制研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2019. |
[11] | 金晶, 高扬, 王洋, 等. 土—水界面磷的稳定性与生物有效性对水体富营养化的影响[J]. 绿色科技, 2018(4): 60-65. |
[12] | 邢雅囡, 阮晓红, 赵振华. 城市重污染河道环境因子对底质氮释放影响[J]. 水科学进展, 2010, 21(1): 120-126. |
[13] | 龚春生, 范成新. 不同溶解氧水平下湖泊底泥-水界面磷交换影响因素分析[J]. 湖泊科学, 2010, 22(3): 430-436. |
[14] | Sondergaard, M., Windolf, J. and Jeppesen, E. (1996) Phosphorus Fractions and Profiles in the Sediment of Shallow Danish Lakes as Related to Phosphorus Load, Sediment Composition and Lake Chemistry. Water Research, 30, 992-1002.
https://doi.org/10.1016/0043-1354(95)00251-0 |
[15] | Roy, E.D., Nguyen, N.T., Bargu, S., et al. (2012) Internal Loading of Phosphorus from Sediments of Lake Pontchartrain (Louisiana, USA) with Implications for Eutrophication. Hydrobiologia, 684, 69-82.
https://doi.org/10.1007/s10750-011-0969-9 |
[16] | 周骏, 陈小兰, 李松, 等. 典型山区轻度营养型水库底泥氮磷释放规律[J]. 青岛科技大学学报(自然科学版), 2018, 39(1): 65-72, 79. |
[17] | 王建军, 沈吉, 张路, 等. 云南滇池和抚仙湖沉积物-水界面营养盐通量及氧气对其的影响[J]. 湖泊科学, 2010, 22(5): 640-648. |
[18] | 邰子秋. 典型富营养化湖泊沉积物中不同磷形态的迁移转化研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2020. |
[19] | Kaiserli, A., Voutsa, D. and Samara, C. (2002) Phosphorus Fractionation in Lake Sediments–Lakes Volvi and Koronia, N. Greece. Chemosphere, 46, 1147-1155. https://doi.org/10.1016/S0045-6535(01)00242-9 |
[20] | Gonsiorczyk, T., Casper, P. and Koschel, R. (1998) Phos-phorus-Binding Forms in the Sediment of an Oligotrophic and an Eutrophic Hard Water Lake of the Baltic Lake District (Germany). Water Science and Technology, 37, 51-58.
https://doi.org/10.2166/wst.1998.0173 |
[21] | Rydin, E. (2000) Potentially Mobile Phosphorus in Lake Erken Sedi-ment. Water Research, 34, 2037-2042.
https://doi.org/10.1016/S0043-1354(99)00375-9 |
[22] | Schindler, D.W., Carpenter, S.R., Chapra, S.C., et al. (2016) Reducing Phosphorus to Curb Lake Eutrophication Is a Success. Environmental Science & Technology, 50, 8923-8929. https://doi.org/10.1021/acs.est.6b02204 |
[23] | 尹大强, 覃秋荣, 阎航. 环境因子对五里湖沉积物磷释放的影响[J]. 湖泊科学, 1994(3): 240-244. |
[24] | 揣小明, 杨柳燕, 程书波, 等. 太湖和呼伦湖沉积物对磷的吸附特征及影响因素[J]. 环境科学, 2014, 35(3): 951-957. |
[25] | Bjorn, A.L., Coolidge, K.M., Norton, S.A., et al. (2006) Norton, Aria Amirbahman Factors Contributing to the Internal Loading of Phosphorus from Anoxic Sediments in Six Maine, USA, lakes. Science of the Total Environment, 373, 534-541. https://doi.org/10.1016/j.scitotenv.2006.12.021 |
[26] | 杨赵. 湖泊沉积物中氮磷源——汇现象影响因素研究进展 [J]. 环境科学导刊, 2017, 36(S1): 16-19. |
[27] | Froelich, P.N. (1988) Kinetic Control of Dissolved Phosphate in Natural Rivers and Estuaries: A Primer on the Phosphate Buffer Mechanism. Limnology and Oceanography, 33, 649-668. https://doi.org/10.4319/lo.1988.33.4part2.0649 |