|
基于PCA的土壤含水量高光谱反演模型比较研究
|
Abstract:
土壤含水量(SMC)是农作物生长过程中的重要指标之一,快速测定土壤水分状况对于农业发展极为重要。针对高光谱波段信息冗余和共线性特点以及光谱测定中无关信息和噪声带来的影响,对原始光谱进行倒数对数一阶微分变换预处理,利用主成分分析(PCA)对光谱信息进行降维,提取出12个主成分作为自变量;利用偏最小二乘、支持向量机、随机森林、BP神经网络建立SMC预测模型并进行综合对比分析。结果表明:利用PCA对光谱信息降维后的主成分建立的模型均有良好的预测能力,选取的主成分累积贡献率达到92%以上;通过对光谱变换前后模型的综合对比可以发现PCA-RF模型精度最高(R2分别为0.8362,0.9630,RPD分别为2.4229、3.7019)。
Soil moisture content (SMC) is one of the important indexes in the process of crop growth. How to quickly measure soil moisture is very important. In the previous SMC water content inversion research, the characteristic band and linear empirical model are mostly used to construct the inversion model, and the characteristics of hyperspectral band information redundancy and collinearity are not fully considered, so the prediction ability of the model needs to be improved. In order to reduce the influence of irrelevant information and noise in spectral determination, the original spectrum was preprocessed by reciprocal logarithm first-order differential transformation; In order to weaken the redundancy and collinearity of hyperspectral band information, principal component analysis (PCA) is used to reduce the dimension of the original spectral information, and 12 principal components are extracted as independent variables; The SMC prediction model is established by using partial least squares, support vector machine, random forest and BP neural network. The results show that PCA has good prediction ability for the principal component model after spectral dimensionality reduction, and the cumulative contribution rate of the selected principal component is 99.99%; Through the comprehensive comparison of the models before and after spectral transformation, it can be found that the accuracy of PCA-RF model is the highest (R2 is 0.8362 and 0.9630 respectively, RPD is 2.4229 and 3.7019 respectively).
[1] | 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748-767. |
[2] | 孙越君, 郑小坡, 秦其明, 等. 不同质量含水量的土壤反射率光谱模拟模型[J]. 光谱学与光谱分析, 2015(8): 2236-2240. |
[3] | 吴代晖, 范闻捷, 崔要奎, 等. 高光谱遥感监测土壤含水量研究进展[J]. 光谱学与光谱分析, 2010, 30(11): 3067-3071. |
[4] | Muller, E. and Décamps, H. (2001) Modeling Soil Moisture-Reflectance. Remote Sensing of Environment, 76, 173-180.
https://doi.org/10.1016/S0034-4257(00)00198-X |
[5] | Whiting, M.L. (2009) Measuring Surface Water in Soil with Light Reflectance. Proceedings of SPIE, 7454, 74540D.
https://doi.org/10.1117/12.826896 |
[6] | 宋韬, 鲍一丹, 何勇. 利用光谱数据快速检测土壤含水量的方法研究[J]. 光谱学与光谱分析, 2009, 29(3): 675-677. |
[7] | Gou, Y., Wei, J., Li, J.-L., Han, C., Tu, Q.-Y. and Liu, C.-H. (2020) Estimating Purple-Soil Moisture Content Using Vis-Nir Spectroscopy. Journal of Mountain Science, 17, 2214-2223. https://doi.org/10.1007/s11629-019-5848-2 |
[8] | Xia, K., Xia, S., Shen, Q., Yang, B., Song, Q., Xu, Y., et al. (2021) Moisture Spectral Characteristics and Hyperspectral Inversion of Fly Ash-Filled Reconstructed Soil. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 253, Article ID: 119590. https://doi.org/10.1016/j.saa.2021.119590 |
[9] | Rinnan, ?., Van Den Berg, F., Engelsen, S.B. (2009) REVIEW of the Most Common Pre-Processing Techniques for Near-Infrared Spectra. TrAC Trends in Analytical Chemistry, 28, 1201-1222. https://doi.org/10.1016/j.trac.2009.07.007 |
[10] | 郭飞, 许镇, 马宏宏, 等. 基于PCA的土壤Cd含量高光谱反演模型对比研究[J]. 光谱学与光谱分析, 2021, 41(5): 1625-1630. |
[11] | Tsai, F. and Philpot, W. (1998) Derivative Analysis of Hyperspectral Data-Fluorescence in Yellow-Green. Remote Sensing of Environment, 66, 41-51. https://doi.org/10.1016/S0034-4257(98)00032-7 |
[12] | Savitzky, A. (1964) Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36, 1627-1639. https://doi.org/10.1021/ac60214a047 |
[13] | Cui, Y. and Fang, Y. (2020) Research on PCA Data Dimension Reduction Algorithm Based on Entropy Weight Method. 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, 23-25 October 2020, 392-396. https://doi.org/10.1109/MLBDBI51377.2020.00084 |
[14] | Vasques, G.M., Grunwald, S. and Sickman, J.O. (2008) Comparison of Multivariate Methods for Inferential Modeling of Soil Carbon Using Visible/Near-Infrared Spectra. Geoderma, 146, 14-25.
https://doi.org/10.1016/j.geoderma.2008.04.007 |
[15] | 赵建辉, 张晨阳, 闵林, 等. 基于特征选择和GA-BP神经网络的多源遥感农田土壤水分反演[J]. 农业工程学报, 2021, 37(11): 112-120. |
[16] | 颜文杰, 卢雯慧, 王继芬. 基于SVM-MLP融合模型的毒品混合物光谱识别研究[J]. 激光与光电子学进展, 2021, 58(14): 1404003. https://doi.org/10.3788/LOP202158.1404003 |
[17] | 蔡亮红, 丁建丽. 基于高光谱多尺度分解的土壤含水量反演[J]. 激光与光电子学进展, 2018, 55(1): 013001.
https://doi.org/10.3788/LOP55.013001 |
[18] | Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 |
[19] | Brown, D.J., Shepherd, K.D., Walsh, M.G., Dewayne Mays, M. and Reinsch, T.G. (2006) Global Soil Characterization with VNIR Diffuse Reflectance Spectroscopy. Geoderma, 132, 273-290.
https://doi.org/10.1016/j.geoderma.2005.04.025 |
[20] | 喻武, 贾晓琳, 陈颂超, 周炼清, 史舟. Vis-NIR光谱快速估测土壤可侵蚀性因子可行性分析[J]. 光谱学与光谱分析, 2018, 38(4): 1076-1081. |