|
固定化藻菌胶球去除养殖用水中无机氮的试验研究
|
Abstract:
未经处理的养殖用水排放进湖泊等水域原生态水域极其容易造成水质恶化,养殖用水虽然无法限制用量,但是具有易于集中处理的特点,是一种可再生的水资源。相较于物理处理的方法覆盖面积有限,化学处理方法会对水质产生无法掌控的影响,生物净化综合成本较低,可以作为水生生态系统的一部分与养殖动物相辅相成。本实验选用PVA-SA作为藻菌复合载体,硼酸-CaCl2作为交联剂,将藻菌一同固定化,以固定化藻菌胶球对养殖用水中整体的无机氮即氨态氮、亚硝酸盐氮和硝酸盐氮的去除率作为主要指标,进行固定化藻菌胶球去除养殖用水中无机氮的试验研究。固定化藻菌胶球中藻菌比例10:1较1:1和1:10组在净化无机氮上有明显的优势,藻菌比例10:1分别对氨态氮、亚硝酸盐氮、硝酸盐氮最大去除率为86.44%、95.57%、79.16%。
The discharge of untreated aquaculture water into lakes and other water bodies in the original ecological water is extremely easy to cause deterioration of water quality. Although the amount of aquaculture water cannot be limited, it can concentrate on treatment and is a kind of renewable water resources. Compared with the limited area covered by physical treatment methods, chemical treatment methods will have an uncontrollable impact on water quality. The overall cost of biological purification is lower, which can be used as a part of the aquatic ecosystem to complement each other with farmed animals. In this experiment, PVA-SA was used as a composite carrier for algae and bacteria, and boric acid-CaCl2 was used as a cross-linking agent to immobilize the algae and bacteria together. The immobilized algae gel ball was used to affect the overall inorganic nitrogen in the breeding water, namely ammonia nitrogen and nitrite. The removal rate of nitrogen and nitrate nitrogen was used as in our experimental study to remove inorganic nitrogen in aquaculture water by immobilized algal gelatin balls. Compared with 1:1 and 1:10 groups, the ratio of 10:1 in immobilized algae gel pellets has obvious advantages in purifying inorganic nitrogen. The maximum removal rate of nitrogen, nitrite nitrogen and nitrate nitrogen is 86.44%, 95.57% and 79.16%.
[1] | 唐金艳. 水生植物腐烂分解对水质的影响[D]: [硕士学位论文]. 南京: 南京大学, 2013.
TANG Jinyan. The effect of decay and decomposition of aquatic plants on water quality. Master’s Thesis, Nanjing: Nanjing University, 2013. (in Chinese) |
[2] | 林志军. 三种挺水植物腐烂分解及其污染物释放规律的研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2017.
LIN Zhijun. Study on the decay and decomposition of three emergent plants and the release of pollutants. Master’s Thesis, Zhenjiang: Jiangsu University, 2017. (in Chinese) |
[3] | 杨彪. 村镇小型化污水处理适用性技术研究[J]. 生态环境与保护, 2021, 3(11): 90-91.
YANG Biao. Research on applicability technology of miniaturized sewage treatment in villages and towns. Ecological Environment and Protection, 2021, 3(11): 90-91. (in Chinese) |
[4] | 李兆军, 李建忠. 一种水产养殖污水处理装置[P]. 中国, CN210726430U. 2020.
LI Zhaojun, LI Jianzhong. A kind of aquaculture sewage treatment device. China, CN210726430U. 2020. (in Chinese) |
[5] | 徐鹏. 浅谈化学工艺在废水处理中的应用[J]. 现代盐化工, 2020, 47(3): 2.
XU Peng. Discussion on the application of chemical technology in wastewater treatment. Modern Salt Chemical Industry, 2020, 47(3): 2. (in Chinese) |
[6] | 林炳金. 一种基于膜分离技术的养殖污水净化设备及方法[P]. 中国, CN110183055A. 2019.
LIN Bingjin. A kind of aquaculture sewage purification equipment and method based on membrane separation technology. China, CN110183055A. 2019. (in Chinese) |
[7] | 朱伟浩, 肖阳. 微滤膜技术在淡水资源回收利用领域的应用[J]. 山东化工, 2019(17): 108.
ZHU Weihao, XIAO Yang. Application of microfiltration membrane technology in the field of freshwater resource recycling. Shandong Chemical Industry, 2019(17): 108. (in Chinese) |
[8] | GAO Feng, LI Chen, YANG Zhao-Hui, 等. 膜光生物反应器在水产养殖废水中连续培养微藻用于生物质生产和养分去除[J]. 生态工程, 2016(92): 55-61.
GAO Feng, LI Chen, YANG Zhao-Hui, et al. Continuous microalgae cultivation in aquaculture wastewater by a membrane photo bioreactor for biomass production and nutrients removal. Ecological Engineering, 2016(92): 55-61. (in Chinese) |
[9] | 刘梅, 朱曦露, 苏艳秋, 等. 微藻和动物性生物饵料在水产养殖中的应用研究[J]. 海洋与渔业, 2016(4): 56-57.
LIU Mei, ZHU Xilu, SU Yanqiu, et al. Research on the application of microalgae and animal bio feeds in aquaculture. Ocean & Fisheries, 2016(4): 56-57. (in Chinese) |
[10] | JEHLíK, T., KODRíK, D., KRI?T?FEK, V., 等. 小球藻属对蜜蜂蜂蜜生物学特性的影响[J]. 蜜蜂学, 2019(19): 670.
JEHLíK, T., KODRíK, D., KRI?T?FEK, V., et al. Effects of Chlorella sp. on biological characteristics of the honey bee apes mellifera. Aphidology, 2019(19): 670. (in Chinese) |
[11] | SYLWIA, LIWI?SKA-WILCZEWSKA, ALDO, 等. 形成水华的蓝藻属和聚球藻属产生的异种化感物对共存微藻的生理效应[J]. 毒素, 2019, 11(12): 712.
SYLWIA, LIWI?SKA-WILCZEWSKA, ALDO, et al. Physiological effects on coexisting microalgae of the allelochemicals produced by the bloom-forming cyanobacteria synechococcus sp. and Nodularia spumigena. Toxins, 2019, 11(12): 712. (in Chinese) |
[12] | KUMAR, K. S., DAHMS, H. U., WON, E. J., 等. 微藻——一种很有前景的重金属修复工具[J]. 生态毒理学和环境安全, 2015(113): 329-352.
KUMAR, K. S., DAHMS, H. U., WON, E. J., et al. Microalgae—A promising tool for heavy metal remediation. Ecotoxicology Environment Safety, 2015(113): 329-352. (in Chinese) |
[13] | WAFEEK, M., SHAKR, I. and ALY, S. M. 水葫芦和小球藻对重金属污染水体的影响及鱼在其中的生化和病理生理反应[C]//第八届水产养殖罗非鱼国际研讨会. 2008.
WAFEEK, M., SHAKR, I. and ALY, S. M. Effect of water hyacinth and chlorella on water polluted by heavy metals and the biochemical and pathophysiological response of exposed fish. In 8th International Symposium on Tilapia in Aquaculture. 2008. (in Chinese) |
[14] | 郐安琪, 赵伟华, 李青云, 等. 典型污染物对藻类生态毒性效应研究进展[J]. 长江科学院院报, 2015, 32(6): 100-109.
KUAI Anqi, ZHAO Weihua, LI Qingyun, et al. Research advances in ecotoxicological effects of typical pollutants on algae. Journal of Yangtze River Scientific Research Institute, 2015, 32(6): 100-109. (in Chinese) |
[15] | WOLKEN, W. A. M., TRAMPER, J. and VAN DER WERF, M. J. 孢子能为我们做什么[J]. 生物技术趋势, 2003, 21(8): 338-345.
WOLKEN, W. A. M., TRAMPER, J. and VAN DER WERF, M. J. What can spores do for us? Trends in Biotechnology, 2003, 21(8): 338-345. (in Chinese) |
[16] | LALLOO, R., MAHARAJH, D., GRGENS, J., 等. 水产养殖中蜡状芽孢杆菌生物制剂遇到生理变量时的响应及功能[J]. 应用微生物生物技术, 2008, 79(1): 111-118.
LALLOO, R., MAHARAJH, D., GRGENS, J., et al. Functionality of a bacillus cereus biological agent in response to physiological variables encountered in aquaculture. Applied Microbiology and Biotechnology, 2008, 79(1): 111-118. (in Chinese) |
[17] | LATIFIAN, M., LIU, J. and MATTIASSON, B. 鸟粪石基肥料及其理化性质[J]. 环保科技, 2012, 33(22/23/24): 2691-2697.
LATIFIAN, M., LIU, J. and MATTIASSON, B. Struvite-based fertilizer and its physical and chemical properties. Environ-mental Technology, 2012, 33(22/23/24): 2691-2697. (in Chinese) |
[18] | 张秀霞, 秦丽姣, 黄聪聪, 等. 微生物固定化载体的选择及其性能[J]. 化工进展, 2011(12): 2781-2786.
ZHANG Xiuxia, QIN Lijiao, HUANG Congcong, et al. Selection and performance of microbial immobilization carriers. Progress in Chemical Industry, 2011(12): 2781-2786. (in Chinese) |
[19] | 谢丹, 黄涛. 海藻酸钠/聚丙烯酰胺凝胶纤维的制备与性能研究[J]. 人造纤维, 2019, 272(4): 4-7.
XIE Dan, HUANG Tao. Preparation and properties of sodium alginate/polyacrylamide gel fiber. Man-Made Fibers, 2019, 272(4): 4-7. (in Chinese) |
[20] | 张永栋, 汪龙眠, 张毅敏, 等. 聚乙烯醇凝胶包埋固定化细菌联合植物的除氮研究[J]. 生态与农村环境学报, 2014, 30(6): 744-748.
ZHANG Yongdong, WANG Longmian, ZHANG Yimin, et al. Nitrogen removal of polyvinyl alcohol gel-embedded and immobilized bacteria combined with plants. Journal of Ecology and Rural Environment, 2014, 30(6): 744-748. (in Chinese) |
[21] | 杨福利, 李秀辰, 白晓磊, 等. 小球藻脱氮除磷及其生物量增殖潜力的研究[J]. 大连海洋大学学报, 2014, 29(2): 193-197.
YANG Fuli, LI Xiuchen, BAI Xiaolei, et al. Research on chlorella nitrogen and phosphorus removal and its biomass proliferation potential. Journal of Dalian Ocean University, 2014, 29(2): 193-197. (in Chinese) |
[22] | 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 第四版. 北京: 中国环境科学出版社, 2002.
Editorial Board of the State Environmental Protection Administration “Water and Wastewater Monitoring and Analysis Me-thods”. Water and wastewater monitoring and analysis methods. Fourth Edition. Beijing: China Environmental Science Press, 2002. (in Chinese) |
[23] | 陈娟. 固定化小球藻及其对氮磷利用的研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2007.
CHEN Juan. Study on immobilized chlorella and its utilization of nitrogen and phosphorus. Master’s Thesis, Nanchang: Nanchang University, 2007. (in Chinese) |
[24] | 王黎颖. 小球藻对水产养殖废水的净化及响应[D]: [硕士学位论文]. 天津: 天津科技大学, 2018.
WANG Liying. Purification and response of chlorella to aquaculture wastewater. Master’s Thesis, Tianjin: Tianjin University of Science and Technology, 2018. (in Chinese) |
[25] | 丁一, 侯旭光, 郭战胜, 等. 固定化小球藻对海水养殖废水氮磷的处理[J]. 中国环境科学, 2019, 39(1): 338-344.
DING Yi, HOU Xuguang, GUO Zhansheng, et al. Treatment of nitrogen and phosphorus in mariculture wastewater by immobilized chlorella. China Environmental Science, 2019, 39(1): 338-344. (in Chinese) |
[26] | 卢徐节, 周世力, 刘延湘, 刘君侠. 固定化微生物技术对养殖水体脱氮的研究[J]. 江汉大学学报(自然科学版), 2011, 39(4): 34-36.
LU Xujie, ZHOU Shili, LIU Yanxiang and LIU Junxia. Study on denitrification of aquaculture water by immobilized microbial technology. Journal of Jianghan University (Natural Science Edition), 2011, 39(4): 34-36. (in Chinese) |
[27] | 刘盼, 贾成霞, 杨慕. 两种微藻对养殖水体中氨氮和亚硝态氮的净化作用[J]. 水产科学, 2018, 37(3): 103-107.
LIU Pan, JIA Chengxia and YANG Mu. Purification effect of two kinds of microalgae on ammonia nitrogen and nitrite nitrogen in culture water. Fisheries Science, 2018, 37(3): 103-107. (in Chinese) |
[28] | 沈南南, 李纯厚, 贾晓平, 等. 小球藻与芽孢杆菌对对虾养殖水质调控作用的研究[J]. 海洋水产研究, 2008, 29(2): 50-54.
SHEN Nannan, LI Chunhou, JIA Xiaoping, et al. Studies on the regulation of chlorella and bacillus on the water quality of prawn culture. Marine Fisheries Research, 2008, 29(2): 50-54. (in Chinese) |