全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2021 

中国普惠保险发展省际差异及影响因素研究
Research on Regional Differences and Influencing Factors of Inclusive Insurance in China

DOI: 10.12677/FIN.2021.116054, PP. 496-505

Keywords: 普惠保险,熵值法,动态面板模型
Inclusive Insurance
, Entropy Method, Dynamic Panel Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过构造普惠保险发展测算指数测算分析中国普惠保险发展的省际差异及其影响因素,并基于动态面板模型进行实证研究。本文通过对中国31省11年数据测算发现保险渗透性对推动普惠保险发展的影响作用最大,保险接触性的作用在逐步提高。研究结果显示中国普惠保险的发展存在显著的省际差异,呈现“中部塌陷”现象;普惠保险发展与地区经济水平呈U型关系,与城市化水平和保险意识呈显著正相关,与总抚养比、地区人口密度及地方政府财政支出占比则呈显著负相关。
This paper develops a model to evaluate the inclusive insurance development level in 31 provinces of China. A dynamic panel model is applied to analyze the factors influencing the development of in-clusive insurance. It turns out significant regional differences, as an overall “Collapse in the Central Region”, in the development of inclusive insurance in China. The relationship between the inclusive insurance and the regional economic level is showed as U-shaped. There are significantly positive correlations between the level of urbanization, insurance awareness and the inclusive insurance development. Well, the total dependent ratio, the regional population density and the proportion of local government expenditure show significantly negative correlations with the inclusive insurance development.

References

[1]  孙蓉, 吴剑, 崔微微. 普惠保险及其发展水平测度[J]. 保险研究, 2019, 369(1): 59-75.
[2]  王向楠, 尹振涛. 普惠保险模式及其在我国的进展[J]. 保险理论与实践, 2019(3): 91-110.
[3]  Claessens, S. (2006) Access to Financial Services: A Review of the Issues and Public Policy Objectives. World Bank Research Observer, 21, 207-240.
https://doi.org/10.1093/wbro/lkl004
[4]  Aggarwal, A. (2010) Impact Evaluation of India’s ‘Yeshasvini’ Commu-nity-Based Health Insurance Programme. Health Economics, 19, 5-35.
https://doi.org/10.1002/hec.1605
[5]  Desai, S., Sinha, T. and Mahal, A. (2011) Prevalence of Hysterectomy among Rural and Urban Women with and without Health Insurance in Gujarat, India. Reproductive Health Matters, 19, 42-51.
https://doi.org/10.1016/S0968-8080(11)37553-2
[6]  Hamid, S.A., Roberts, J. and Mosley, P. (2011) Can Micro Health Insurance Reduce Poverty? Evidence from Bangladesh. The Journal of Risk and Insurance, 78, 57-82.
https://doi.org/10.1111/j.1539-6975.2010.01402.x
[7]  Cai, J. and Song, C.C. (2012) Insurance Take-up in Rural China: Learning from Hypothetical Experience. Behavioral & Experimental Economics eJournal, 1-27.
https://doi.org/10.2139/ssrn.2161649
[8]  Cole, S., Gine, X., Tobacman, J., et al. (2013) Barriers to Household Risk Management: Evidence from India. American Economic Journal, 5, 104-135.
https://doi.org/10.1257/app.5.1.104
[9]  张艳萍. 普惠性保险发展指数及影响因素分析——基于排序选择模型[J]. 现代经济信息, 2016(3): 359-360.
[10]  董冬. 我国普惠保险发展水平衡量指标设计及测算[D]: [硕士学位论文]. 北京: 首都经济贸易大学, 2017.
[11]  张国俊, 周春山, 许学强. 中国金融排斥的省际差异及影响因素[J]. 地理研究, 2014, 33(12): 2299-2311
[12]  陆凤芝, 黄永兴, 徐鹏. 中国普惠金融的省域差异及影响因素[J]. 金融经济学研究, 2017(1): 111-120.
[13]  葛和平, 朱卉雯. 中国数字普惠金融的省域差异及影响因素研究[J]. 新金融, 2018(2): 47-53.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133