全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多传感器和Android的老人安全智能监护系统
The Elderly Safety Intelligent Monitoring System Based on Multi-Senors and Android

DOI: 10.12677/SEA.2021.105071, PP. 661-669

Keywords: 智能系统,防摔倒检测,GPS定位,语音识别,移动终端
Intelligent System
, Anti-Fall Detection, GPS Positioning, Voice Recognition, Mobile Terminal

Full-Text   Cite this paper   Add to My Lib

Abstract:

设计与实现了一套集数据采集和远程监测的老人安全智能监护系统,硬件部分包括心率采集、防摔倒数据采集、GPS定位、语音识别、GSM语音通话和无线传输等电路。利用BMD101心率采集电路检测人体心率信号的异常,通过MPU6050获取人体行为姿态的加速度与角度,用于检测有无摔倒。将采集的心率和防摔倒数据通过MQTT协议上传至云服务器,采用HTTP协议获取和解析实时数据,并通过心率曲线图和行动轨迹的形式显示在远程Android移动终端。经系统测试发现,当检测到异常心率值或老人有摔倒行为时,系统将自动拨打至预置电话,以便及时发现意外和采取措施。老人可通过一键拨打和语音识别等形式实现与监护人的通话,提高智能设备对老人的友好性。
A set of data collection and remote monitoring of safety intelligent monitoring system for the elderly was designed, the hardware part included heart rate collection, anti-fall data collection, GPS positioning, voice recognition, GSM voice calls and wireless transmission circuits. The BMD101 heart rate acquisition circuit was used to detect the abnormality of the human heart rate signal, and the MPU6050 was used to obtain the acceleration and angle of the human body’s behavior and posture to detect whether there is a fall. The collected heart rate and fall prevention data were uploaded to the cloud server through the MQTT protocol, real-time data was acquired and analyzed by HTTP protocol, and displayed on remote Android mobile terminals in the form of heart rate graphs and action trajectories. The system test found that when an abnormal heart rate value is detected or the elderly has a fall behavior, the system will automatically dial the preset phone in order to detect accidents and take measures in time. The elderly can communicate with their guardians through one-key dialing and voice recognition, which improves the friendliness of smart devices to the elderly.

References

[1]  张敏, 石倩倩, 张珊珊, 等. 基于语音识别和STM32的老年人健康状况监护系统的设计[J]. 电子质量, 2017(5): 57-59.
[2]  刘宇, 惠鸿飞, 路永乐, 等. 一种基于智能手机终端的远程人体姿态监测系统[J]. 中国惯性技术学报, 2019, 27(6): 713-718.
[3]  Zhou, X.X. (2020) Wearable Health Monitoring System Based on Human Motion State Recognition. Computer Communications, 150, 62-71.
https://doi.org/10.1016/j.comcom.2019.11.008
[4]  Chen, M., Ma, Y., Song, J., et al. (2016) Smart Clothing: Connecting Human with Clouds and Big Data for Sustainable Health Monitoring. Mobile Networks & Applications, 21, 825-845.
https://doi.org/10.1007/s11036-016-0745-1
[5]  熊界. 基于低功耗蓝牙的高性能跌倒检测系统的研究[D]: [硕士学位论文]. 北京: 北京协和医学院; 中国医学科学院; 清华大学医学部; 北京协和医学院中国医学科学院, 2017.
[6]  叶忠儒, 李萌, 蔡宪东, 等. 多传感器融合的人体健康监测系统设计与实现[J]. 软件工程与应用, 2021, 10(2): 60-69.
[7]  谢聪, 姜晓红. 基于ZigBee的空巢老人健康管理系统研究[J]. 装备制造技术, 2020, 310(10): 31-34.
[8]  韩国成, 古旺, 朱健铭, 陈真诚. 基于BMD101芯片的便携式心电监护仪研制[J]. 中国医学物理学杂志, 2017, 34(8): 850-854.
[9]  杨梦雨. 基于MPU6050的老年人摔倒检测系统设计[D]: [硕士学位论文]. 重庆: 重庆大学, 2017.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133