全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

工业设备维修知识图谱构建与应用
Construction and Application of Industrial Equipment Maintenance Knowledge Graph

DOI: 10.12677/SEA.2021.105069, PP. 644-653

Keywords: 工业智能化,知识图谱,知识抽取,本体,图数据库
Industrial Intelligence
, Knowledge Graph, Knowledge Extraction, Ontology Construction, Graph Database

Full-Text   Cite this paper   Add to My Lib

Abstract:

在工业智能化革命快速发展的助推之下,知识图谱正越来越多地应用到工业领域中。本文以某散热膜生产工厂生产设备维修记录为数据源,利用自顶向下和自底向上相结合的构建方式,首先对原始数据进行处理与分析,在专业人员的指导下,完成对知识图谱模式层(本体)的构建,再通过对数据源的抽取,按照模式层的本体间关系,构建知识图谱三元组;最后,通过Neo4j图数据库将其储存起来,并以节点和边的图谱方式直观地将所构建的工业设备维修知识图谱表示出来。本文所构建的工业设备维修知识图谱可应用于维修人员评价系统、智能问答系统,智能推荐系统以及维修异常预警系统。
Driven by the rapid development of industrial intelligent revolution, knowledge graph is increasingly applied to the industrial field. In this paper, we take the maintenance records of production equipment in a heat dissipation film production factory as the data source, and we use the construction method of the combination of top-down and bottom-up. Firstly, we process and analyze the original data, and complete the construction of the knowledge graph pattern layer (ontology) with the guidance of professionals. Secondly, through the extraction of data sources, according to the relationship between ontology in the pattern layer we construct the triples of knowledge graph; finally, the knowledge graph we construct is stored in the graph database called Neo4j. The constructed industrial equipment maintenance knowledge graph is intuitively expressed in the form of nodes and edges. This knowledge graph can be applied to build the evaluation system of maintenance personnel, intelligent question and answer system, intelligent recommendation system and maintenance anomaly early warning system.

References

[1]  朱超宇, 刘雷. 基于知识图谱的医学决策支持应用综述[J]. 数据分析与知识发现, 2020, 4(12): 26-32.
[2]  聂同攀, 曾继炎, 程玉杰, 马梁. 面向飞机电源系统故障诊断的知识图谱构建技术及应用[J/OL]. 航空学报: 1-19, http://kns.cnki.net/kcms/detail/11.1929.V.20210825.1351.004.html, 2021-09-23.
[3]  郭榕, 杨群, 刘绍翰, 李伟, 袁鑫, 黄香鸿. 电网故障处置知识图谱构建研究与应用[J]. 电网技术, 2021, 45(6): 2092-2100.
[4]  曹现刚, 张梦园, 雷卓, 段欣宇, 陈瑞昊. 煤矿装备维护知识图谱构建及应用[J]. 工矿自动化, 2021, 47(3): 41-45.
[5]  付雷杰, 曹岩, 白瑀, 冷杰武. 国内垂直领域知识图谱发展现状与展望[J/OL]. 计算机应用研究: 1-15,
https://doi.org/10.19734/j.issn.1001-3695.2021.04.0095, 2021-09-23.
[6]  百度百科本体. https://baike.baidu.com/item/%E6%9C%AC%E4%BD%93/17330?fr=aladdin
[7]  刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600.
[8]  Karp, P.D. and Gruber, T. (1994) A Generic Knowledge-Base Access Protocol. Technical Report.
[9]  焦凯楠, 李欣, 朱容辰. 中文领域命名实体识别综述[J/OL]. 计算机工程与应用: 1-16, http://kns.cnki.net/kcms/detail/11.2127.tp.20210526.1823.008.html, 2021-09-23.
[10]  Collobert, R., Weston, J., Bottou, L., et al. (2011) Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research, 12, 2493-2537.
[11]  Chiu, J.P.C. and Nichols, E. (2015) Named Entity Recognition with Bidirectional LSTM-CNN. Transactions of the Association for Computational Linguistics, 4, 357-370.
https://doi.org/10.1162/tacl_a_00104
[12]  刘辉, 江千军, 桂前进, 张祺, 王梓豫, 王磊, 王京景. 实体关系抽取技术研究进展综述[J]. 计算机应用研究, 2020, 37(S2): 1-5.
[13]  侯梦薇, 卫荣, 陆亮, 兰欣, 蔡宏伟. 知识图谱研究综述及其在医疗领域的应用[J]. 计算机研究与发展, 2018, 55(12): 2587-2599.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133