|
关系驱动的基于时间卷积网络的股票走势预测算法
|
Abstract:
[1] | 张玉婧. 股市基本面分析与技术面分析结合方法探讨[J]. 商业文化(上半月), 2011(10): 201. |
[2] | Fischer, T. and Krauss, C. (2017) Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions. European Journal of Operational Research, 270, 654-669. https://doi.org/10.1016/j.ejor.2017.11.054 |
[3] | Zhang, R., Yuan, Z. and Shao, X. (2018) A New Combined CNN-RNN Model for Sector Stock Price Analysis. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, 23-27 July 2018, 546-551.
https://doi.org/10.1109/COMPSAC.2018.10292 |
[4] | 赵红蕊, 薛雷. 基于LSTM-CNN-CBAM模型的股票预测研究[J]. 计算机工程与应用, 2021, 57(3): 203-207. |
[5] | Xu, Y. and Cohen, S.B. (2018) Stock Movement Predic-tion from Tweets and Historical Prices. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Vol. 1: Long Papers, Melbourne, 15-20 July 2018, 1970-1979. https://doi.org/10.18653/v1/P18-1183 |
[6] | 张梦吉, 杜婉钰, 郑楠. 引入新闻短文本的个股走势预测模型[J]. 数据分析与知识发现, 2019, 3(5): 11-18. |
[7] | Kipf, T.N. and Welling, M. (2016) Semi-Supervised Classification with Graph Convolutional Networks.
arXiv:1609.02907. |
[8] | Chen, Y. and Wei, Z. and Huang, X. (2018) Incorporating Corporation Relationship via Graph Convolutional Neural Networks for Stock Price Prediction. Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, 22-26 October 2018, 1655-1658. https://doi.org/10.1145/3269206.3269269 |
[9] | Walczak, B. and Massart, D.L. (1997) Noise Suppression and Signal Compression Using the Wavelet Packet Transform. Chemometrics and Intelligent Laboratory Systems, 36, 81-94. https://doi.org/10.1016/S0169-7439(96)00077-9 |
[10] | Ramsey, J.B. (1999) The Contribution of Wavelets to the Analysis of Economic and Financial Data. Philosophical Transactions of the Royal Society A: Mathematical Physical & Engineering Sciences, 357, 1593-2606.
https://doi.org/10.1098/rsta.1999.0450 |
[11] | 郭晓霞, 杨慧中. 小波去噪中软硬阈值的一种改良折衷法[J]. 智能系统学报, 2008, 3(3): 222-225. |
[12] | Bai, S., Kolter, J.Z. and Koltun, V. (2018) An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv preprint arXiv:1803.01271,. |
[13] | Long, J., Shel-hamer, E. and Darrell, T. (2015) Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 39, 640-651.
https://doi.org/10.1109/TPAMI.2016.2572683 |
[14] | Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. and Kavukcuoglu, K. (2016) Wavenet: A Generative Model for Raw Audio. arXiv preprint arXiv:1609.03499. |
[15] | Yu, F. and Koltun, V. (2016) Multi-Scale Context Aggregation by Dilated Convolutions. International Conference on Learning Representations 2016, San Juan, 2-4 May 2016, 1-13. |
[16] | He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90 |
[17] | Glorot, X., Bordes, A. and Bengio, Y. (2011) Deep Sparse Rectifier Neural Networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, 11-13 April 2011, 315-323. |
[18] | Salimans, T. and Kingma, D.P. (2016) Weight Normalization: A Sim-ple Reparameterization to Accelerate Training of Deep Neural Networks. Advances in Neural Information Processing Systems, 29, 901-909. |
[19] | Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15, 1929-1958. |
[20] | 何柏彬. 投资者情绪对我国股票价格波动的影响研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2021. |