全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

视觉工作记忆中数量和精度的权衡关系是否受个体自发控制
Whether the Trade-Off between Quantity and Quality in Visual Working Memory Is under Individual Voluntarily Control?

DOI: 10.12677/AP.2021.1110264, PP. 2323-2331

Keywords: 视觉工作记忆,数量,精度,自发控制
Visual Working Memory
, Quantity, Quality, Voluntary Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

视觉工作记忆中记忆表征的数量和精度之间存在着负相关,这种负相关关系被视为数量和精度之间的权衡。但这一权衡过程是完全由刺激驱动,还是个体可以根据任务需求自发进行控制尚不清楚,由此引发了关于记忆资源分配机制的一场争论。本文系统地梳理了数量和精度的权衡关系是否受个体自发控制相关研究的发展历程,指出了影响个体能否自发进行控制受到记忆项目呈现时间及个体视觉工作记忆容量的影响,最后就未来研究仍需解决的问题提出进一步的建议。
There is a negative correlation between the quality and quantity of memory representations in visual working memory, and this negative correlation is seen as a trade-off between quantity and quality. However, it is unclear whether this trade-off is entirely stimulus-driven or can be controlled voluntarily by individuals according to task demands, which has led to a debate on the mechanism of memory resource allocation. This paper systematically reviews the development of research on whether the trade-off between quantity and quality is subject to individual voluntary control, and point out this voluntary control is influenced by the exposure duration and working memory capacity, and some suggestions for future research are proposed.

References

[1]  Alvarez, G. A., & Cavanagh, P. (2004). The Capacity of Visual Short-Term Memory Is Set Both by Visual Information Load and by Number of Objects. Psychological Science, 15, 106-111.
https://doi.org/10.1111/j.0963-7214.2004.01502006.x
[2]  Baddeley, A. (2012). Working Memory: Theories, Models, and Controversies. Annual Review of Psychology, 63, 1-29.
https://doi.org/10.1146/annurev-psych-120710-100422
[3]  Baddeley, A., Cocchini, G., Della Sala, S., Logie, R. H., & Spinnler, H. (1999). Working Memory and Vigilance: Evidence from Normal Aging and Alzheimer’s Disease. Brain and Cognition, 41, 87-108.
https://doi.org/10.1006/brcg.1999.1097
[4]  Barton, B., Ester, E. F., & Awh, E. (2009). Discrete Resource Allocation in Visual Working Memory. Journal of Experimental Psychology Human Perception and Performance, 35, 1359-1367.
https://doi.org/10.1037/a0015792
[5]  Bays, P. M., & Husain, M. (2008). Dynamic Shifts of Limited Working Memory Resources in Human Vision. Science (New York, N.Y.), 321, 851-854.
https://doi.org/10.1126/science.1158023
[6]  Bocincova, A., van Lamsweerde, A. E., & Johnson, J. S. (2016). Assessing the Evidence for a Cue-Induced Trade-Off between Capacity and Precision in Visual Working Memory Using Mixture Modelling and Bayesian Model Comparison. Visual Cognition, 24, 435-446.
https://doi.org/10.1080/13506285.2017.1301613
[7]  Cowan, N. (2001). The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity. The Behavioral and Brain Sciences, 24, 87-114.
https://doi.org/10.1017/S0140525X01003922
[8]  Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegnér, J., & Compte, A. (2009). Mechanism for Top-Down Control of Working Memory Capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 6802-6807.
https://doi.org/10.1073/pnas.0901894106
[9]  Emrich, S. M., Lockhart, H. A., & Al-Aidroos, N. (2017). Attention Mediates the Flexible Allocation of Visual Working Memory Resources. Journal of Experimental Psychology Human Perception and Performance, 43, 1454-1465.
https://doi.org/10.1037/xhp0000398
[10]  Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual Working Memory for Simple and Complex Visual Stimuli. Psychonomic Bulletin & Review, 12, 1127-1133.
https://doi.org/10.3758/BF03206454
[11]  Feldmann-Wüstefeld, T. (2021). Neural Measures of Working Memory in a Bilateral Change Detection Task. Psychophysiology, 58, e13683.
https://doi.org/10.1111/psyp.13683
[12]  Fougnie, D., Cormiea, S. M., Kanabar, A., & Alvarez, G. A. (2016). Strategic Trade-Offs between Quantity and Quality in Working Memory. Journal of Experimental Psychology Human Perception and Performance, 42, 1231-1240.
https://doi.org/10.1037/xhp0000211
[13]  Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete Capacity Limits in Visual Working Memory. Current Opinion in Neurobiology, 20, 177-182.
https://doi.org/10.1016/j.conb.2010.03.005
[14]  Gambarota, F., & Sessa, P. (2019). Visual Working Memory for Faces and Facial Expressions as a Useful “Tool” for Understanding Social and Affective Cognition. Frontiers in Psychology, 10, 2392.
https://doi.org/10.3389/fpsyg.2019.02392
[15]  Gao, Z., Yin, J., Xu, H., Shui, R., & Shen, M. (2011). Tracking Object Number or Information Load in Visual Working Memory: Revisiting the Cognitive Implication of Contralateral Delay Activity. Biological Psychology, 87, 296-302.
https://doi.org/10.1016/j.biopsycho.2011.03.013
[16]  Gaspar, J. M., Christie, G. J., Prime, D. J., Jolic?ur, P., & McDonald, J. J. (2016). Inability to Suppress Salient Distractors Predicts Low Visual Working Memory Capacity. Pro-ceedings of the National Academy of Sciences of the United States of America, 113, 3693-3698.
https://doi.org/10.1073/pnas.1523471113
[17]  Gorgoraptis, N., Catalao, R. F., Bays, P. M., & Husain, M. (2011). Dynamic Updating of Working Memory Resources for Visual Objects. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 8502-8511.
https://doi.org/10.1523/JNEUROSCI.0208-11.2011
[18]  He, X., Zhang, W., Li, C., & Guo, C. (2015). Precision Requirements Do Not Affect the Allocation of Visual Working Memory Capacity. Brain Research, 1602, 136-143.
https://doi.org/10.1016/j.brainres.2015.01.028
[19]  Keshvari, S., van den Berg, R., & Ma, W. J. (2013). No Evidence for an Item Limit in Change Detection. PLoS Computational Biology, 9, e1002927.
https://doi.org/10.1371/journal.pcbi.1002927
[20]  Lorenc, E. S., Sreenivasan, K. K., Nee, D. E., Vandenbroucke, A., & D’Esposito, M. (2018). Flexible Coding of Visual Working Memory Representations during Distraction. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38, 5267-5276.
https://doi.org/10.1523/JNEUROSCI.3061-17.2018
[21]  Luck, S. J., & Vogel, E. K. (1997). The Capacity of Visual Working Memory for Features and Conjunctions. Nature, 390, 279-281.
https://doi.org/10.1038/36846
[22]  Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The Contralateral Delay Activity as a Neural Measure of Visual Working Memory. Neuroscience and Biobehavioral Reviews, 62, 100-108.
https://doi.org/10.1016/j.neubiorev.2016.01.003
[23]  Ma, W. J. (2018). Problematic Usage of the Zhang and Luck Mixture Model.
https://doi.org/10.1101/268961
[24]  Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing Concepts of Working Memory. Nature Neuroscience, 17, 347-356.
https://doi.org/10.1038/nn.3655
[25]  Machizawa, M. G., Driver, J., & Watanabe, T. (2020). Gray Matter Volume in Different Cortical Structures Dissociably Relates to Individual Differences in Capacity and Precision of Visual Working Memory. Cerebral Cortex (New York, N.Y.: 1991), 30, 4759-4770.
https://doi.org/10.1093/cercor/bhaa046
[26]  Machizawa, M. G., Goh, C. C., & Driver, J. (2012). Human Visual Short-Term Memory Precision Can Be Varied at Will When the Number of Retained Items Is Low. Psychological Science, 23, 554-559.
https://doi.org/10.1177/0956797611431988
[27]  Maniglia, M. R., & Souza, A. S. (2020). Age Differences in the Efficiency of Filtering and Ignoring Distraction in Visual Working Memory. Brain Sciences, 10, 556.
https://doi.org/10.3390/brainsci10080556
[28]  McCants, C. W., Katus, T., & Eimer, M. (2019). The Capacity and Resolution of Spatial Working Memory and Its Role in the Storage of Non-Spatial Features. Biological Psychology, 140, 108-118.
https://doi.org/10.1016/j.biopsycho.2018.12.006
[29]  Murray, A. M., Nobre, A. C., Astle, D. E., & Stokes, M. G. (2012). Lacking Control over the Trade-Off between Quality and Quantity in Visual Short-Term Memory. PLoS ONE, 7, e41223.
https://doi.org/10.1371/journal.pone.0041223
[30]  Ramaty, A., & Luria, R. (2018). Visual Working Memory Cannot Trade Quantity for Quality. Frontiers in Psychology, 9, 719.
https://doi.org/10.3389/fpsyg.2018.00719
[31]  Rensink, R. A. (2002). Change Detection. Annual Review of Psy-chology, 53, 245-277.
https://doi.org/10.1146/annurev.psych.53.100901.135125
[32]  Schurgin, M. W. (2018). Visual Memory, the Long and the Short of It: A Review of Visual Working Memory and Long-Term Memory. Attention, Perception & Psychophysics, 80, 1035-1056.
https://doi.org/10.3758/s13414-018-1522-y
[33]  Suchow, J. W., Fougnie, D., Brady, T. F., & Alvarez, G. A. (2014). Terms of the Debate on the Format and Structure of Visual Memory. Attention, Perception & Psychophysics, 76, 2071-2079.
https://doi.org/10.3758/s13414-014-0690-7
[34]  Vellage, A. K., Müller, P., Schmicker, M., Hopf, J. M., & Müller, N. G. (2019). High Working Memory Capacity at the Cost of Precision? Brain Sciences, 9, 210.
https://doi.org/10.3390/brainsci9090210
[35]  Vogel, E. K., & Machizawa, M. G. (2004). Neural Activity Predicts Individual Differences in Visual Working Memory Capacity. Nature, 428, 748-751.
https://doi.org/10.1038/nature02447
[36]  Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of Features, Conjunctions and Objects in Visual Working Memory. Journal of Experimental Psychology Human Perception and Performance, 27, 92-114.
https://doi.org/10.1037/0096-1523.27.1.92
[37]  Ye, C., Hu, Z., Li, H., Ristaniemi, T., Liu, Q., & Liu, T. (2017). A Two-Phase Model of Resource Allocation in Visual Working Memory. Journal of Experimental Psychology Learning, Memory, and Cognition, 43, 1557-1566.
https://doi.org/10.1037/xlm0000376
[38]  Ye, C., Sun, H. J., Xu, Q., Liang, T., Zhang, Y., & Liu, Q. (2019). Working Memory Capacity Affects Trade-Off between Quality and Quantity Only When Stimulus Exposure Duration Is Sufficient: Evidence for the Two-Phase Model. Scientific Reports, 9, Article No. 8727.
https://doi.org/10.1038/s41598-019-44998-3
[39]  Ye, C., Zhang, L., Liu, T., Li, H., & Liu, Q. (2014). Visual Working Memory Capacity for Color Is Independent of Representation Resolution. PLoS ONE, 9, e91681.
https://doi.org/10.1371/journal.pone.0091681
[40]  Yoo, A. H., Klyszejko, Z., Curtis, C. E., & Ma, W. J. (2018). Strategic Allocation of Working Memory Resource. Scientific Reports, 8, Article No. 16162.
https://doi.org/10.1038/s41598-018-34282-1
[41]  Zhang, W., & Luck, S. J. (2008). Discrete Fixed-Resolution Representations in Visual Working Memory. Nature, 453, 233-235.
https://doi.org/10.1038/nature06860
[42]  Zhang, W., & Luck, S. J. (2011). The Number and Quality of Representations in Working Memory. Psychological Science, 22, 1434-1441.
https://doi.org/10.1177/0956797611417006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133