|
Malkus水轮混沌旋转的力学机理分析
|
Abstract:
Malkus混沌水轮是展示混沌现象的典型力学装置,本文探讨了Malkus水轮混沌旋转的力学机理。把Malkus水轮混沌旋转的数学模型转换为Kolmogorov系统,基于惯性力矩、内力矩、耗散力矩和外力矩的不同耦合模式,利用理论分析和数值仿真相结合的方法,分析探讨了Malkus水轮混沌旋转的主要影响因素和内在的力学机理。影响混沌旋转现象主要因素有内能、动能和哈密顿能量。通过分析仿真得知力矩缺失模式并不能产生混沌旋转现象,全力矩模式才能产生混沌旋转现象,四种力矩缺一不可,与此同时只有耗散和外力相匹配时才能产生混沌。
Malkus chaotic water wheel is a typical mechanical device to show chaotic phenomena. This paper discusses the mechanical mechanism of Malkus chaotic rotation. The mathematical model of Malkus wheel chaotic rotation is transformed into Kolmogorov system. Based on different coupling modes of inertia moment, internal moment, dissipative moment and external moment, the main influencing factors and internal mechanical mechanism of Malkus wheel chaotic rotation are analyzed and discussed by combining theoretical analysis with numerical simulation. The main factors affecting the chaotic rotation are internal energy, kinetic energy and Hamiltonian energy. Through the analysis and simulation, we know that the lack of torque mode cannot produce chaotic rotation phenomenon; the full torque mode can produce chaotic rotation phenomenon, and four kinds of torque are indispensable, at the same time, only when the dissipation and external force match, it can produce chaos.
[1] | Poincare, H. (1893) Les Methodes Nouvelles de la Mecanique Celeste. Gathiwes-villar, Paris, 23-30. |
[2] | Lorenz, E.N. (1963) Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141.
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 |
[3] | Malkus, W.V.R. (1972) Non-Periodic Convection at High and Low Prandtl Number. Memoires de la Societe Royale des Sciences de Liege, 4, 125-128. |
[4] | Miroslav, K. and Godfrey, G. (1992) Theory for the Experimental Observation of Chaos in a Rotating Water Wheel. Physical Review A, 45, 626-637. https://doi.org/10.1103/PhysRevA.45.626 |
[5] | Leslie, E.M. (2007) The Malkus-Lorenz Water Wheel Revisited. American Journal of Physics, 75, 1114-1122.
https://doi.org/10.1119/1.2785209 |
[6] | Ashish, B. and Van, G.R.A. (2018) Chaos in a Non-Autonomous Nonlinear System Describing Asymmetric Water Wheels. Nonlinear Dynamics, 93, 1977-1988. https://doi.org/10.1007/s11071-018-4301-3 |
[7] | Arnold, V. (1991) Kolmogorv’s Hydrodynamic Attractors. Proceedings of the Royal Society of London, Series A, 434, 19-22. https://doi.org/10.1098/rspa.1991.0077 |
[8] | Pasini, A. and Pelino, V. (2000) A Unified View of Kolmogorov and Lorenz Systems. Physics Letters A, 275, 435-446.
https://doi.org/10.1016/S0375-9601(00)00620-4 |
[9] | 王贺元. Couette-Taylor流的力学机理与能量转换[J]. 数学物理学报, 2020, 40(1): 243-256. |
[10] | 成乃涵, 程敏熙, 李春兰, 林莫迪, 杨上照. 利用洛伦兹水车研究混沌现象[J]. 大学物理, 2020, 39(1): 66-70. |
[11] | Marsden, J. and Ratiu, T. (2002) Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer, Berlin. |
[12] | Boldrighini, C. and Franceschini, V.A. (1979) Five-Dimensional Truncation of the Plane Incompressible Navier-Stokes Equations. Communications in Mathematical Physics, 64, 159-170. https://doi.org/10.1007/BF01197511 |
[13] | Strogatz, S.H. (1994) Nonlinear Dynamics and Chaos. Perseus Books, Reading. |
[14] | Liang, X.Y. and Qi, G.Y. (2017) Mechanical Analysis and Energy Conversion of Chen Chaotic System. General and Applied Physics, 47, 288-294. https://doi.org/10.1007/s13538-017-0495-y |
[15] | Liang, X.Y. and Qi, G.Y. (2017) mechanical Analysis of Chen Chaotic System. Chaos, Solitons and Fractals, 98, 173-177. https://doi.org/10.1016/j.chaos.2017.03.021 |
[16] | Qi, G. and Ling, X. (2016) Mechanical Analysis of Qi Four-Wing Chaotic System. Nonlinear Dynamics, 86, 1095-1106.
https://doi.org/10.1007/s11071-016-2949-0 |
[17] | Pelino, V., Maimone, F. and Pasini, A. (2014) Energy Cycle for the Lorenz Attractor. Chaos, Solitons and Fractals, 64, 67-77. https://doi.org/10.1016/j.chaos.2013.09.005 |