全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

半线性发展方程支配的微分博弈鞍点的通有唯一性
Generic Uniqueness of Saddle Point for Differential Games Governed by Semi-Linear Evolution Equation

DOI: 10.12677/AAM.2021.1010377, PP. 3574-3581

Keywords: 通有唯一性,半线性发展方程,微分博弈,集值映射,鞍点
Generic Uniqueness
, Semi-Linear Evolution Equation, Differential Games, Set-Valued Mapping, Saddle Point

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用集值分析方法,研究半线性发展方程支配的微分博弈鞍点的稳定性,证明了半线性发展方程支配的微分博弈关于控制系统右端函数发生扰动时,对应的鞍点具有通有唯一性,也就是在Baire纲分类意义下,大多数半线性发展方程支配的微分博弈的鞍点具有唯一解。
In this paper, the generic uniqueness of saddle point for differential games governed by semi-linear evolution equation is studied. By employing the method of set-valued analysis, we prove that, the generic uniqueness of differential games governed by semi-linear evolution equation with respect to perturb function of the right-hand control system, that is, most of differential games governed by semi-linear evolution equation exist unique solution, in the sense of Baire’s category.

References

[1]  Yu, J. and Yuan, X.Z. (1998) The Study of Solutions for Differential Inclusions and Differential Equations in the Sense of Baire Category Theory. Applied Mathematics Letters, 11, 51-56.
https://doi.org/10.1016/S0893-9659(98)00055-X
[2]  Yu, J., Peng, D.T. and Xiang, S.W. (2011) Generic Uniqueness of Equilibrium Points. Nonlinear Analysis: Theory, Methods & Applications, 74, 6326-6332.
https://doi.org/10.1016/j.na.2011.06.011
[3]  Peng, D.T., Yu, J. and Xiu, N.H. (2012) Generic Uniqueness of Solutions for a Class of Vector Ky Fan Inequalities. Journal of Optimization Theory and Applications, 155, 165-179.
https://doi.org/10.1007/s10957-012-0062-1
[4]  Peng, D.T., Yu, J. and Xiu, N.H. (2013) Generic Uniqueness Theorems with Some Applications. Journal of Global Optimization, 56, 713-725.
https://doi.org/10.1007/s10898-012-9903-6
[5]  俞建, 彭定涛. 大多数单调变分不等式具有唯一解[J]. 应用数学学报, 2017, 40(4): 481-488.
[6]  Yu, J., Liu, Z.X., Peng, D.T., Xu, D.Y. and Zhou, Y.H. (2014) Existence and Stability of Optimal Control. Optimal Control Applications and Methods, 35, 721-729.
https://doi.org/10.1002/oca.2096
[7]  Deng, H.Y. and Wei, W. (2015) Existence and Stability for Nonlinear Optimal Control Problems with 1-Mean Equi- Continuous Controls. Journal of Industrial and Management Optimation, 11, 1409-1422.
https://doi.org/10.3934/jimo.2015.11.1409
[8]  Deng, H.Y. and Wei, W. (2015) Stability Analysis for Optimal Control Problems Governed by Semilinear Evolution Equation. Advances in Difference Equations, 2015, Article No. 103.
https://doi.org/10.1186/s13662-015-0443-5
[9]  Yu, J. and Peng, D.T. (2020) Generic Stability of Nash Equilibrium for Noncooperative Differential Games. Operations Research Letters, 48, 157-162.
https://doi.org/10.1016/j.orl.2020.02.001
[10]  Isaacs, R. (1965) Differential Games. Wiley, New York.
[11]  Friedman, A. (1971) Differential Games. Wiley, New York.
[12]  张嗣瀛. 微分博弈[M]. 北京: 科学出版社, 1987.
[13]  李登峰. 微分博弈及其应用[M]. 北京: 国防工业出版社, 2000.
[14]  Yong, J.M. (2015) Differential Games (A Concise Introduction). Word Scientific, Singapore.
https://doi.org/10.1142/9121
[15]  Fort, M.K. (1950) Essential and Nonessential Fixed Points. American Journal of Mathematics, 72, 315-322.
https://doi.org/10.2307/2372035
[16]  Wu, W.T. and Jiang, J.H. (1962) Essential Equilibrium Points of N-Person Noncooperative Games. Scientia Sincia, 11, 1307-1322.
[17]  Jiang, J.H. (1962) Essential Fixed Points of the Multivalued Mappings. Scientia Sincia, 11, 293-298.
[18]  Kohlberg, E. and Metens, J.F. (1991) On the Strategic Stability of Equilibrium. Springer-Verlag, Berlin.
[19]  俞建. 博弈论与非线性分析[M]. 北京: 科学出版社, 2008.
[20]  Kenderov, P. (1984) Most of the Optimization Problems Has Unique Solutions. In: Brosowski, B. and Deutsch, F., Eds., Proceedings, Oberwolfach on Parametric Optimization, Birkhauser, Basel, 203-216.
https://doi.org/10.1007/978-3-0348-6253-0_13
[21]  Ribarska, N. and Kenderov, P. (1988) Most of the Two-Person Zero-Sum Games Have Unique Solution. Workshop/ Mini-Conference on Functional Analysis and Optimiztion, Canberra, 73-82.
[22]  Ghosh, M.K. and Shaiju, A.J. (2004) Existence of Value and Saddle Point in Infinite-Dimensional Games. Journal of Optimization Theory and Application, 2, 301-325.
https://doi.org/10.1023/B:JOTA.0000037407.15482.72
[23]  Tan, K.K., Yu, J. and Yuan, X.Z. (1995) The Uniqueness of Saddle Points. Bulletin of the Polish Academy of Sciences Mathematics, 43, 119-129.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133