|
捕食者具有Allee效应和其他食物来源的Leslie-Gower模型的稳定性分析
|
Abstract:
本文研究捕食者具有Allee效应和其他食物来源的Leslie-Gower模型的动力学性质。我们讨论了边界平衡点和正平衡点存在的条件和稳定性。说明了较大的Allee效应会破坏系统的稳定性。当捕食者具有其他食物来源时,系统的动力学性质会变得更加复杂,也就是捕食者具有其他食物来源可能会破坏系统的稳定性。最后通过数值模拟,发现系统会经历Hopf分支并产生极限环。
This paper studies the dynamics of the Leslie-Gower model for predator with Allee effect and other food source. We discuss the existence conditions and stability of boundary equilibrium points and positive equilibria. It is shown that the larger Allee effect will destroy the stability of the system. When predators have other food sources, the dynamics of the system becomes more complex, that is, the presence of predators with other food sources may destabilize the system. Finally, through numerical simulation we find that the system experiences Hopf bifurcation and limit cycle exists.
[1] | Allee, W.C. (1931) Co-Operation among Animals. American Journal of Sociology, 37, 386-398.
https://doi.org/10.1086/215731 |
[2] | Leslie, P.H. (1948) Some Further Notes on the Use of Matrices in Population Mathematics. Biometrika, 35, 213-245.
https://doi.org/10.1093/biomet/35.3-4.213 |
[3] | Aziz-Alaoui, M.A. and Okiye, M.D. (2003) Boundedness and Global Stability for a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes. Applied Mathematics Letters, 16, 1069-1075.
https://doi.org/10.1016/S0893-9659(03)90096-6 |
[4] | Sasmal, S.K. and Chattopadhyay, J. (2013) An Eco-Epidemiological System with Infected Prey and Predator Subject to the Weak Allee Effect. Mathematical Biosciences, 246, 260-271. https://doi.org/10.1016/j.mbs.2013.10.005 |
[5] | Xiang, C. Huang, J.C., Ruan, S.G. and Xiao, D.M. (2020) Bifurcation Analysis in a Host-Generalist Parasitoid Model with Holling II Functional Response. Journal of Differential Equations, 268, 4618-4662.
https://doi.org/10.1016/j.jde.2019.10.036 |
[6] | Terry, A.J. (2015) Predator-Prey Models with Component Allee Effect for Predator Reproduction. Journal of Mathematical Biology, 71, 1325-1352. https://doi.org/10.1007/s00285-015-0856-5 |
[7] | Zhu, Z., Wu, R. and Lai, L. (2020) The Influence of Fear Effect to the Lotka-Volterra Predator-Prey System with Predator Has Other Food Resource. Advances in Difference Equations, 1, 1-13.
https://doi.org/10.1186/s13662-020-02612-1 |
[8] | Arancibia-Ibarraa, C. and Flores, J. (2021) Dynamics of a Leslie-Gower Predator-Prey Model with Holling Type II Functional Response, Allee Effect and a Generalist Predator. Mathematics and Computers in Simulation, 188, 1-22.
https://doi.org/10.1016/j.matcom.2021.03.035 |
[9] | 张芷芬, 丁同仁, 黄文灶, 等. 微分方程定性理论[M]. 北京: 科学出版社, 1985. |