全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有Allee效应和恐惧效应的捕食–食饵系统动力学性质
Dynamic Behavior of a Predator-Prey System with Allee Effect and Fear Effect

DOI: 10.12677/AAM.2021.1010375, PP. 3555-3564

Keywords: Allee效应,恐惧效应,捕食–食饵,稳定性
Allee Effect
, Fear Effect, Predator-Prey, Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究一类具有Allee效应和恐惧效应的捕食–食饵模型。我们讨论系统平衡点的存在性,接着分析边界平衡点和正平衡点的稳定性。同时证明系统存在鞍结分支。当Allee效应越强时,越不利于食饵和捕食者种群生存。通过数值模拟,验证系统存在极限环,同时出现双稳现象。增大恐惧效应,会使得正平衡点从不稳定变成稳定,也就是较大的恐惧效应可以促进系统的稳定。
This paper studies a predator-prey system with Allee effect and fear effect. We discuss the existence of the equilibria in the system, and analyze the stability of the boundary equilibria and positive equilibria. Also we prove that the system has a saddle-node bifurcation. When the Allee effect is large, it is unfavorable to the survival of prey and predator populations. Through numerical simulation, it is verified that the system has a limit cycle, and show the bistable phenomenon. Increasing the fear effect will make the positive equilibrium from unstable to stable, that is, a larger fear effect can promote the stability of the system.

References

[1]  Wang, X.Y., Zanette, L. and Zou, X.F. (2016) Modelling the Fear Effect in Predator-Prey Interactions. Journal of Mathematical Biology, 73, 1179-1204.
https://doi.org/10.1007/s00285-016-0989-1
[2]  Zu, J. (2013) Global Qualitative Analysis of a Predator-Prey System with Allee Effect on the Prey Species. Mathematics and Computers in Simulation, 94, 33-54.
https://doi.org/10.1016/j.matcom.2013.05.009
[3]  Huang, Y. and Li, Z. (2020) The Stability of a Predator-Prey Model with Fear Effect in Prey and Square Root Functional Response. Annals of Applied Mathematics, 36, 186-194.
[4]  Xiao, Z. and Li, Z. (2019) Stability Analysis of a Mutual Interference Predator-Prey Model with the Fear Effect. Journal of Applied Science and Engineering, 22, 205-211.
[5]  Huang, Y. and Li, Z. (2020) Global Stability of a Leslie-Gower Predator-Prey Model with Mutual Interference and Fear Effect. Journal of Shanghai Normal University (Natural Sciences), 49, 334-343.
[6]  Allee, W.C. (1931) Animal Aggregations: A Study in General Sociology. University of Chicago Press, Chicago.
https://doi.org/10.5962/bhl.title.7313
[7]  Zhu, Z.L., He, M.X., Li, Z. and Chen, F.D. (2020) Stability and Bifurcation in a Logistic Model with Allee Effect and Feedback Control. International Journal of Bifurcation and Chaos, 30, Article ID: 2050231.
https://doi.org/10.1142/S0218127420502314
[8]  Arancibia-Ibarra, C. (2019) The Basins of Attraction in a Modified May-Holling-Tanner Predator-Prey Model with Allee Effect. Nolinear Analysis, 185, 15-28.
https://doi.org/10.1016/j.na.2019.03.004
[9]  张芷芬, 丁同仁, 黄文灶, 等. 微分方程定性理论[M]. 北京: 科学出版社, 1985.
[10]  Preko, L. (1996) Differential Equations and Dynamical Systems. Springer, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133