全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脉冲释放沃尔巴克氏体感染雄蚊模型动力学分析
Dynamic Analysis of the Wolbachia-Infected Male Mosquitoes Model by Pulsed Release

DOI: 10.12677/AAM.2021.1010370, PP. 3505-3517

Keywords: 阶段结构,性别结构,脉冲模型,周期解,双稳
Stage Structure
, Sex Structure, Impulsive Model, Periodic Solutions, Bistability

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以昆虫不相容技术为背景研究了具有阶段和性别结构的野生与不育蚊子相互作用脉冲模型。其目的是研究采用周期释放不育蚊子的方法控制野生蚊子数量的可行性。首先通过动力学分析得到了系统平凡周期解的存在性,并分别利用Floquet理论和Lyapunov稳定性定理给出了相应的局部稳定性条件和全局稳定性条件,从而验证了脉冲释放不育蚊子可以使野生蚊子灭绝。其次得到了系统非平凡周期解的存在性,并在具体参数下讨论了其局部稳定性,发现系统在一定阈值条件下出现平凡周期解和非平凡周期解共存的双稳现象,这表明脉冲控制也可以在不消灭野生蚊子的情况下控制它们的数量。最后利用数值模拟验证了相关理论结果。
In this paper, we study a wild and sterile mosquito interaction impulsive model with stage-structure and sex-structure based on insect incompatibility technology. The aim is to study the feasibility of controlling the number of wild mosquitoes by releasing sterile mosquitoes periodically. Firstly, the existence of trivial periodic solutions is obtained by dynamic analysis, and the corresponding local stability and global stability conditions are proved by Floquet theory and Lyapunov stability theorem respectively. The results show that the pulsed release of sterile mosquitoes could make the wild mosquitoes extinct. Then, the existence of nontrivial periodic solutions is obtained, and its local stability is discussed under specific parameter values. It is found that the system has the bistable phenomenon in which trivial periodic solution and non-trivial periodic solution coexist under certain threshold conditions. This shows that the population of mosquitoes can be controlled by pulse control without eliminating them. Finally, numerical simulation verifies the theoretical results.

References

[1]  Monath, T.P. (1994) Dengue: The Risk to Developed and Developing Countries. Proceedings of the National Academy of Sciences, 91, 2395-2400.
https://doi.org/10.1073/pnas.91.7.2395
[2]  Li, M.T., Sun, G.Q., Laith, Y., et al. (2016) The Driving Force for 2014 Dengue Outbreak in Guangdong, China. PLoS ONE, 11, e0166211.
https://doi.org/10.1371/journal.pone.0166211
[3]  Dyck, V. and Hendrichs, J.P. (2005) Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management.
https://doi.org/10.1007/1-4020-4051-2
[4]  郑小英, 吴瑜, 张东京, 等. 沃尔巴克氏体(Wolbachia)结合昆虫绝育技术控制白纹伊蚊种群[J]. 南京农业大学学报, 2020, 43(3): 387-391.
[5]  Zheng, X.T., Zhang, D.J., et al. (2019) Incompatible and Sterile Insect Techniques Combined Eliminate Mosquitoes. Nature, 572, 56-61.
https://doi.org/10.1038/s41586-019-1407-9
[6]  Li, J. (2008) Differential Equations Models for Interacting Wild and Transgenic Mosquito Populations. Journal of Biological Dynamics, 2, 241-258.
https://doi.org/10.1080/17513750701779633
[7]  Cai, L., Ai, S. and Li, J. (2014) Dynamics of Mosquitoes Populations with Different Strategies for Releasing Sterile Mosquitoes. SIAM Journal on Applied Mathematics, 74, 1786-1809.
https://doi.org/10.1137/13094102X
[8]  Lu, J. and Li, J. (2011) Dynamics of Stage-Structured Discrete Mosquito Population Models. Journal of Applied Analysis and Computation, 1, 53-67.
https://doi.org/10.11948/2011005
[9]  Li, J. (2012) Discrete-Time Models with Mosquitoes Carrying Genetically-Modified Bacteria. Mathematical Biosciences, 240, 35-44.
https://doi.org/10.1016/j.mbs.2012.05.012
[10]  Li, J., Cai, L. and Li, Y. (2017) Stage-Structured Wild and Sterile Mosquito Population Models and Their Dynamics. Journal of Biological Dynamics, 11, 79-101.
https://doi.org/10.1080/17513758.2016.1159740
[11]  Zhang, X., Liu, Q. and Zhu, H. (2020) Modeling and Dynamics of Wolbachia-Infected Male Releases and Mating Competition on Mosquito Control. Journal of Mathematical Biology, 81, 243-276.
https://doi.org/10.1007/s00285-020-01509-7
[12]  Keeling, M.J., Jiggins, F.M. and Read, J.M. (2003) The Invasion and Coexistence of Competing Wolbachia Strains. Heredity, 91, 382-388.
https://doi.org/10.1038/sj.hdy.6800343
[13]  Bo, Z., Tang, M. and Yu, J. (2014) Modeling Wolbachia Spread in Mosquitoes through Delay Differential Equations. Siam Journal on Applied Mathematics, 74, 743-770.
https://doi.org/10.1137/13093354X
[14]  Farkas, J.Z. and Hinow, P. (2010) Structured and Unstructured Continuous Models for Wolbachia Infections. Bulletin of Mathematical Biology, 72, 2067-2088.
https://doi.org/10.1007/s11538-010-9528-1
[15]  Hancock, P.A., Sinkins, S.P. and Godfray, H. (2011) Strategies for Introducing Wolbachia to Reduce Transmission of Mosquito-Borne Diseases. PLoS Neglected Tropical Diseases, 5, e1024.
https://doi.org/10.1371/journal.pntd.0001024
[16]  Chan, M. and Kim, P.S. (2013) Modelling a Wolbachia Invasion Using a Slow-Fast Dispersal Reaction-Diffusion Approach. Bulletin of Mathematical Biology, 75, 1501-1523.
https://doi.org/10.1007/s11538-013-9857-y
[17]  Huang, M.G., Tang, M.X. and She, Y.J. (2015) Wolbachia Infection Dynamics by Reaction-Diffusion Equations. Science China (Mathematics), 58, 77-96.
[18]  Waltz, E. (2017) US Government Approves “Killer” Mosquitoes to Fight Disease. Nature.
https://doi.org/10.1038/nature.2017.22959
[19]  Huang, M.Z. and Song, X.Y. (2017) Modelling and Analysis of Impulsive Releases of Sterile Mosquitoes. Journal of Biological Dynamics, 11, 147-171.
https://doi.org/10.1080/17513758.2016.1254286
[20]  Zhang, X.H., Tang, S.Y., et al. (2016) Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever with an Impulsive Differential Equation. Bulletin of Mathematical Biology, 78, 1968-2010.
https://doi.org/10.1007/s11538-016-0208-7
[21]  Li, Y.Z. and Liu, X.N. (2017) An Impulsive Model for Wolbachia Infection Control of Mosquito-Borne Diseases with General Birth and Death Rate Functions. Nonlinear Analysis Real World Applications, 37, 412-432.
https://doi.org/10.1016/j.nonrwa.2017.03.003
[22]  Bliman, P.A., Cardona-Salgado, D., et al. (2019) Implementation of Control Strategies for Sterile Insect Techniques. Mathematical Biosciences, 314, 43-60.
https://doi.org/10.1016/j.mbs.2019.06.002
[23]  Lakshmikantham, V. and Simeonov, P.S. (1989) Theory of Impulsive Differential Equations. World Scientific, Singapore.
https://doi.org/10.1142/0906
[24]  Nundloll, S., Mailleret, L. and Grognard, F. (2010) Two Models of Interfering Predators in Impulsive Biological Control. Journal of Biological Dynamics, 4, 102-114.
https://doi.org/10.1080/17513750902968779
[25]  宋新宇. 脉冲微分方程理论及其应用[M]. 北京: 科学出版社, 2011: 94-96.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133