|
肺炎诊断标志物的研究进展
|
Abstract:
肺炎常常因为无法早期区分是细菌性还是病毒性的感染,造成抗生素的滥用和额外的医疗负担,尽管只有一小部分病人需要使用抗生素,但高达72%的肺炎患者接受抗菌治疗,过度使用抗菌药物会增加耐药细菌的流行性,引起并发症,如艰难梭菌相关性腹泻。准确诊断是病毒还是细菌感染对于肺炎的治疗尤为重要。尽管临床目前有相关病原学的辅助检测,但肺炎的感染可能是单一性的,也可能是病毒和细菌共同感染,单一临床指标的检测不能解决这个问题。本文主要论述目前临床常用的肺炎诊断标志物及其研究进展。
Pneumonia often causes antibiotic abuse and additional medical burden because it is unable to distinguish bacterial or viral infection at an early stage. Although only a small number of patients need to use antibiotics, up to 72% of pneumonia patients receive empirical antibacterial treatment. Excessive use of antibiotics will increase the prevalence of drug-resistant bacteria and cause complications, for example, Clostridium difficile associated diarrhea. Therefore, accurate diagnosis of virus or bacterial infection is particularly important for the treatment of pneumonia. Although there are relevant etiological auxiliary tests in clinic, the infection of pneumonia is likely to be the co-infection of virus and bacteria. The detection of a single clinical index cannot solve this problem. This paper mainly discusses the commonly used clinical diagnostic markers of pneumonia and its research progress.
[1] | Hong, C.Y., et al. (2004) Acute Respiratory Symptoms in Adults in General Practice. Family Practice, 21, 317-323.
https://doi.org/10.1093/fampra/cmh319 |
[2] | Johnstone, J., Majumdar, S.R., Fox, J.D. and Marrie, T.J. (2008) Viral Infection in Adults Hospitalized with Community-Acquired Pneumonia: Prevalence, Pathogens, and Presentation. Chest, 134, 1141-1148.
https://doi.org/10.1378/chest.08-0888 |
[3] | Cantrell, R., Young, A.F. and Martin, B.C. (2002) Antibiotic Prescribing in Ambulatory Care Settings for Adults with Colds, Upper Respiratory Tract Infections, and Bronchitis. Clinical Therapeutics, 24, 170-182.
https://doi.org/10.1016/S0149-2918(02)85013-5 |
[4] | Shapiro, D.J., Hicks, L.A., Pavia, A.T. and Hersh, A.L. (2014) Antibiotic Prescribing for Adults in Ambulatory Care in the USA, 2007-09. Journal of Antimicrobial Chemotherapy, 69, 234-240. https://doi.org/10.1093/jac/dkt301 |
[5] | Angus, D.C., et al. (2001) Epidemiology of Severe Sepsis in the United States: Analysis of Incidence, Outcome, and Associated Costs of Care. Critical Care Medicine, 29, 1303-1310. https://doi.org/10.1097/00003246-200107000-00002 |
[6] | Dowell, S.F. and Schwartz, B. (1997) Resistant Pneumococci: Protecting Patients through Judicious Use of Antibiotics. American Family Physician, 55, 1647-1654, 1657-1658. |
[7] | Kunin, C.M. (1993) Resistance to Antimicrobial Drugs—A Worldwide Calamity. Annals of Internal Medicine, 118, 557-561. https://doi.org/10.7326/0003-4819-118-7-199304010-00011 |
[8] | Neu, H.C. (1992) The Crisis in Antibiotic Resistance. Science, 257, 1064-1073.
https://doi.org/10.1126/science.257.5073.1064 |
[9] | Cohen, M.L. (1992) Epidemiology of Drug Resistance: Implications for a Post-Antimicrobial Era. Science, 257, 1050-1055. https://doi.org/10.1126/science.257.5073.1050 |
[10] | Coenen, S., Gielen, B., Blommaert, A., Beutels, P., Hens, N. and Goossens, H. (2014) Appropriate International Measures for Outpatient Antibiotic Prescribing and Consumption: Recommendations from a National Data Comparison of Different Measures. Journal of Antimicrobial Chemotherapy, 69, 529-534. https://doi.org/10.1093/jac/dkt385 |
[11] | Evans, A.T., Husain, S., Durairaj, L., Sadowski, L.S., Charles-Damte, M. and Wang, R.N.Y. (2002) Azithromycin for Acute Bronchitis: A Randomised, Double-Blind, Controlled Trial. The Lancet, 359, 1648-1654.
https://doi.org/10.1016/S0140-6736(02)08597-5 |
[12] | van Kooyk, Y. and Rabinovich, G.A. (2008) Protein-Glycan Interactions in the Control of Innate and Adaptive Immune Responses. Nature Immunology, 9, 593-601. https://doi.org/10.1038/ni.f.203 |
[13] | Warren, H.S., et al. (2009) A Genomic Score Prognostic of Outcome in Trauma Patients. Molecular Medicine, 15, 220-227. https://doi.org/10.2119/molmed.2009.00027 |
[14] | Desai, K.H., et al. (2011) Dissecting Inflammatory Complications in Critically Injured Patients by Within-Patient Gene Expression Changes: A Longitudinal Clinical Genomics Study. PLoS Medicine, 8, e1001093.
https://doi.org/10.1371/journal.pmed.1001093 |
[15] | Cvijanovich, N., et al. (2008) Validating the Genomic Signature of Pediatric Septic Shock. Physiological Genomics, 34, 127-134. https://doi.org/10.1152/physiolgenomics.00025.2008 |
[16] | Shanley, T.P., et al. (2007) Genome-Level Longitudinal Expression of Signaling Pathways and Gene Networks in Pediatric Septic Shock. Molecular Medicine, 13, 495-508. https://doi.org/10.2119/2007-00065.Shanley |
[17] | Wong, H.R., et al. (2007) Genome-Level Expression Profiles in Pediatric Septic Shock Indicate A Role for Altered Zinc Homeostasis in Poor Outcome. Physiological Genomics, 30, 146-155.
https://doi.org/10.1152/physiolgenomics.00024.2007 |
[18] | Wong, H.R., et al. (2009) Genomic Expression Profiling across the Pediatric Systemic Inflammatory Response Syndrome, Sepsis, and Septic Shock Spectrum. Critical Care Medicine, 37, 1558-1566.
https://doi.org/10.1097/CCM.0b013e31819fcc08 |
[19] | Wong, H.R., Freishtat, R.J., Monaco, M., Odoms, K. and Shanley, T.P. (2010) Leukocyte Subset-Derived Genomewide Expression Profiles in Pediatric Septic Shock. Pediatric Critical Care Medicine, 11, 349-355. |
[20] | Wong, H.R., et al. (2011) Validation of a Gene Expression-Based Subclassification Strategy for Pediatric Septic Shock. Critical Care Medicine, 39, 2511-2517. https://doi.org/10.1097/CCM.0b013e3182257675 |
[21] | Almansa, R., et al. (2014) Transcriptomic Evidence of Impaired Immunoglobulin G Production in Fatal Septic Shock. Journal of Critical Care, 29, 307-309. https://doi.org/10.1016/j.jcrc.2013.11.020 |
[22] | Bermejo-Martin, J.F., et al. (2010) Host Adaptive Immunity Deficiency in Severe Pandemic Influenza. Critical Care, 14, Article No. R167. https://doi.org/10.1186/cc9259 |
[23] | Zarkesh, M., Sedaghat, F., Heidarzadeh, A., Tabrizi, M., Bolooki-Moghadam, K. and Ghesmati, S. (2015) Diagnostic Value of IL-6, CRP, WBC, and Absolute Neutrophil Count to Predict Serious Bacterial Infection in Febrile Infants. Acta Medica Iranica, 53, 408-411. |
[24] | Lannerg?rd, A., Larsson, A., Kragsbjerg, P. and Friman, G. (2003) Correlations between Serum Amyloid A Protein and C-Reactive Protein in Infectious Diseases. Scandinavian Journal of Clinical and Laboratory Investigation, 63, 267-272. https://doi.org/10.1080/00365510310001636 |
[25] | Martin-Loeches, I., Papiol, E., Almansa, R., López-Campos, G., Bermejo-Martin, J.F. and Rello, J. (2012) Intubated Patients Developing Tracheobronchitis or Pneumonia Have Distinctive Complement System Gene Expression Signatures in the Pre-Infection Period: A Pilot Study. Medicina Intensiva, 36, 257-263.
https://doi.org/10.1016/j.medin.2011.10.009 |
[26] | Tsalik, E.L. and Woods, C.W. (2009) Sepsis Redefined: The Search for Surrogate Markers. International Journal of Antimicrobial Agents, 34, S16-S20. https://doi.org/10.1016/S0924-8579(09)70560-6 |
[27] | Assicot, M., Bohuon, C., Gendrel, D., Raymond, J., Carsin, H. and Guilbaud, J. (1993) High Serum Procalcitonin Concentrations in Patients with Sepsis and Infection. The Lancet, 341, 515-518.
https://doi.org/10.1016/0140-6736(93)90277-N |
[28] | Müller, B., White, J.C., Nylén, E.S., Snider, R.H., Becker, K.L. and Habener, J.F. (2001) Ubiquitous Expression of the Calcitonin-i Gene in Multiple Tissues in Response to Sepsis. The Journal of Clinical Endocrinology & Metabolism, 86, 396-404. |
[29] | Moyer, M.W. (2012) New Biomarkers Sought for Improving Sepsis Management and Care. Nature Medicine, 18, 999.
https://doi.org/10.1038/nm0712-999 |
[30] | Wacker, C., Prkno, A., Brunkhorst, F.M. and Schlattmann, P. (2013) Procalcitonin as a Diagnostic Marker for Sepsis: A Systematic Review and Meta-Analysis. The Lancet Infectious Diseases, 13, 426-435.
https://doi.org/10.1016/S1473-3099(12)70323-7 |
[31] | Dandona, P., Nix, D., Wilson, M.F., Aljada, A., Love, J., Assicot, M. and Bohuon, C. (1994) Procalcitonin Increase after Endotoxin Injection in Normal Subjects. The Journal of Clinical Endocrinology & Metabolism, 79, 1605-1608. |
[32] | Schuetz, P., et al. (2012) Procalcitonin to Initiate or Discontinue Antibiotics in Acute Respiratory Tract Infections. Cochrane Database of Systematic Reviews, 2012, CD007498. https://doi.org/10.1002/14651858.CD007498.pub2 |
[33] | Carvalho, C.M., et al. (2008) High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics. Journal of the American Statistical Association, 103, 1438-1456. https://doi.org/10.1198/016214508000000869 |
[34] | Chen, M., et al. (2011) Detection of Viruses via Statistical Gene Expression Analysis. IEEE Transactions on Biomedical Engineering, 58, 468-479. https://doi.org/10.1109/TBME.2010.2059702 |
[35] | Wu, Y. and Liu, Y. (2013) Functional Robust Support Vector Machines for Sparse and Irregular Longitudinal Data. Journal of Computational and Graphical Statistics, 22, 379-395. https://doi.org/10.1080/10618600.2012.680823 |
[36] | Witten, D.M., Tibshirani, R. and Hastie, T. (2009) A Penalized Matrix Decomposition, with Applications to Sparse Principal Components and Canonical Correlation Analysis. Biostatistics, 10, 515-534.
https://doi.org/10.1093/biostatistics/kxp008 |
[37] | Chaussabel, D. and Baldwin, N. (2014) Democratizing Systems Immunology with Modular Transcriptional Repertoire Analyses. Nature Reviews Immunology, 14, 271-280. https://doi.org/10.1038/nri3642 |
[38] | Pankla, R., et al. (2009) Genomic Transcriptional Profiling Identifies a Candidate Blood Biomarker Signature for the Diagnosis of Septicemic Melioidosis. Genome Biology, 10, Article No. R127.
https://doi.org/10.1186/gb-2009-10-11-r127 |
[39] | Smith, C.L., et al. (2014) Identification of a Human Neonatal Immune-Metabolic Network Associated with Bacterial Infection. Nature Communications, 5, Article No. 4649. https://doi.org/10.1038/ncomms5649 |
[40] | Vassiliou, A.G., et al. (2013) Induced Expression and Functional Effects of Aquaporin-1 in Human Leukocytes in Sepsis. Critical Care, 17, Article No. R199. https://doi.org/10.1186/cc12893 |
[41] | Khatri, P., et al. (2013) A Common Rejection Module (CRM) for Acute Rejection across Multiple Organs Identifies Novel Therapeutics for Organ Transplantation. Journal of Experimental Medicine, 210, 2205-2221.
https://doi.org/10.1084/jem.20122709 |
[42] | Chen, R., et al. (2014) A Meta-Analysis of Lung Cancer Gene Expression Identifies PTK7 as a Survival Gene in Lung Adenocarcinoma. Cancer Research, 74, 2892-2902. https://doi.org/10.1158/0008-5472.CAN-13-2775 |
[43] | Custer, E.M., Finch, C.A., Sobel, R.E. and Zettner, A. (1995) Population Norms for Serum Ferritin. Journal of Laboratory and Clinical Medicine, 126, 88-94. |
[44] | Jain, S., et al. (2014) Procalcitonin as a Prognostic Marker for Sepsis: A Prospective Observational Study. BMC Research Notes, 7, Article No. 458. https://doi.org/10.1186/1756-0500-7-458 |
[45] | Qu, J., et al. (2015) Evaluation of Procalcitonin, C-Reactive Protein, Interleukin-6 & Serum Amyloid A as Diagnostic Biomarkers of Bacterial Infection in Febrile Patients. Indian Journal of Medical Research, 141, 315-321.
https://doi.org/10.4103/0971-5916.156617 |
[46] | Kleiner, G., Marcuzzi, A., Zanin, V., Monasta, L. and Zauli, G. (2013) Cytokine Levels in the Serum of Healthy Subjects. Mediators of Inflammation, 2013, Article ID: 434010. https://doi.org/10.1155/2013/434010 |
[47] | van de Veerdonk, F.L., et al. (2012) IL-18 Serum Concentration Is Markedly Elevated in Acute EBV Infection and Can Serve as a Marker for Disease Severity. The Journal of Infectious Diseases, 206, 197-201.
https://doi.org/10.1093/infdis/jis335 |
[48] | Vecchiet, J., et al. (2005) Association between Plasma Interleukin-18 Levels and Liver Injury in Chronic Hepatitis C Virus Infection and Non-Alcoholic Fatty Liver Disease. Annals of Clinical & Laboratory Science, 35, 415-422. |
[49] | Stacey, A.R., et al. (2009) Induction of a Striking Systemic Cytokine Cascade Prior to Peak Viremia in Acute Human Immunodeficiency Virus Type 1 Infection, in Contrast to More Modest and Delayed Responses in Acute Hepatitis B and C Virus Infections. Journal of Virology, 83, 3719-3733. https://doi.org/10.1128/JVI.01844-08 |
[50] | ten Oever, J., Tromp, M., Bleeker-Rovers, C.P., Joosten, L.A.B., Netea, M.G., Pickkers, P. and van de Veerdonk, F.L. (2012) Combination of Biomarkers for the Discrimination between Bacterial and Viral Lower Respiratory Tract Infections. Journal of Infection, 65, 490-495. https://doi.org/10.1016/j.jinf.2012.08.004 |
[51] | Sharma, A., Chakraborti, A., Das, A., Dhiman, R.K. and Chawla, Y. (2009) Elevation of Interleukin-18 in Chronic Hepatitis C: Implications for Hepatitis C Virus Pathogenesis. Immunology, 128, e514-e522.
https://doi.org/10.1111/j.1365-2567.2008.03021.x |
[52] | Wu, J., Chen, L.L., Chen, Y.M., Yang, J. and Wu, D.Q. (2014) Serum Ferritin Concentration Predicts Mortality in Patients with Hepatitis B Virus-Related Acute on Chronic Liver Failure. Archives of Medical Research, 45, 251-256.
https://doi.org/10.1016/j.arcmed.2014.03.004 |
[53] | Stylianou, E., et al. (2003) Raised Serum Levels of Interleukin-18 Is Associated with Disease Progression and May Contribute to Virological Treatment Failure in HIV-1-Infected Patients. Clinical & Experimental Immunology, 132, 462-466. https://doi.org/10.1046/j.1365-2249.2003.02179.x |
[54] | Wiercinska-Drapalo, A., Jaroszewicz, J., Flisiak, R. and Prokopowicz, D. (2004) Plasma Interleukin-18 Is Associated with Viral Load and Disease Progression in HIV-1-Infected Patients. Microbes and Infection, 6, 1273-1277.
https://doi.org/10.1016/j.micinf.2004.07.009 |
[55] | Riera, A., Gimferrer, E., Cadafalch, J., Remacha, A. and Martin, S. (1994) Prevalence of High Serum and Red Cell Ferritin Levels in HIV-Infected Patients. Haematologica, 79, 165-167. |
[56] | Gupta, S., Imam, A. and Licorish, K. (1986) Serum Ferritin in Acquired Immune Deficiency Syndrome. Journal of Clinical & Laboratory Immunology, 20, 11-13. |
[57] | van de Weg, C.A., et al. (2014) Hyperferritinaemia in Dengue Virus Infected Patients Is Associated with Immune Activation and Coagulation Disturbances. PLoS Neglected Tropical Diseases, 8, e3214.
https://doi.org/10.1371/journal.pntd.0003214 |
[58] | Soundravally, R., Agieshkumar, B., Daisy, M., Sherin, J. and Cleetus, C.C. (2015) Ferritin Levels Predict Severe Dengue. Infection, 43, 13-19. https://doi.org/10.1007/s15010-014-0683-4 |
[59] | Mustafa, A.S., Elbishbishi, E.A., Agarwal, R. and Chaturvedi, U.C. (2001) Elevated Levels of Interleukin-13 and IL-18 in Patients with Dengue Hemorrhagic Fever. FEMS Immunology and Medical Microbiology, 30, 229-233.
https://doi.org/10.1111/j.1574-695X.2001.tb01575.x |
[60] | Michels, M., et al. (2015) Normal Free Interleukin-18 (IL-18) Plasma Levels in Dengue Virus Infection and the Need to Measure Both Total IL-18 and IL-18 Binding Protein Levels. Clinical and Vaccine Immunology, 22, 650-655.
https://doi.org/10.1128/CVI.00147-15 |
[61] | Dinarello, C.A., Novick, D., Kim, S. and Kaplanski, G. (2013) Interleukin-18 and IL-18 Binding Protein. Frontiers in Immunology, 4, 289. https://doi.org/10.3389/fimmu.2013.00289 |
[62] | Gilbert, D.N. (2011) Procalcitonin as a Biomarker in Respiratory Tract Infection. Clinical Infectious Diseases, 52, S346-S350. https://doi.org/10.1093/cid/cir050 |
[63] | Whicher, J., Bienvenu, J. and Monneret, G. (2001) Procalcitonin as an Acute Phase Marker. Annals of Clinical Biochemistry, 38, 483-493. https://doi.org/10.1177/000456320103800505 |
[64] | Mazodier, K., et al. (2005) Severe Imbalance of IL-18/IL-18BP in Patients with Secondary Hemophagocytic Syndrome. Blood, 106, 3483-3489. https://doi.org/10.1182/blood-2005-05-1980 |
[65] | Shakoory, B., et al. (2016) Interleukin-1 Receptor Blockade Is Associated with Reduced Mortality in Sepsis Patients with Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Critical Care Medicine, 44, 275-281. https://doi.org/10.1097/CCM.0000000000001402 |
[66] | Toldo, S., et al. (2014) Interleukin-18 Mediates Interleukin-1-Induced Cardiac Dysfunction. American Journal of Physiology-Heart and Circulatory Physiology, 306, H1025-H1031. https://doi.org/10.1152/ajpheart.00795.2013 |
[67] | Salonen, E.M. and Vaheri, A. (1981) C-Reactive Protein in Acute Viral Infections. Journal of Medical Virology, 8, 161-167. https://doi.org/10.1002/jmv.1890080302 |
[68] | Stasakova, J., et al. (2005) Influenza A Mutant Viruses with Altered NS1 Protein Function Provoke Caspase-1 Activation in Primary Human Macrophages, Resulting in Fast Apoptosis and Release of High Levels of Interleukins 1beta and 18. Journal of General Virology, 86, 185-195. |
[69] | Cannon, J.G., et al. (1990) Circulating Interleukin-1 and Tumor Necrosis Factor in Septic Shock and Experimental Endotoxin Fever. The Journal of Infectious Diseases, 161, 79-84. https://doi.org/10.1093/infdis/161.1.79 |
[70] | Giuffrida, M.J., et al. (2014) Increased Cytokine/Chemokines in Serum from Asthmatic and Non-Asthmatic Patients with Viral Respiratory Infection. Influenza and Other Respiratory Viruses, 8, 116-122.
https://doi.org/10.1111/irv.12155 |
[71] | Tschoeke, S.K., Oberholzer, A. and Moldawer, L.L. (2006) Interleukin-18: A Novel Prognostic Cytokine in Bacteria-Induced Sepsis. Critical Care Medicine, 34, 1225-1233. https://doi.org/10.1097/01.CCM.0000208356.05575.16 |
[72] | Mangiarotti, P., Moulin, F., Palmer, P., Ravilly, S., Raymond, J. and Gendrel, D. (1999) Interferon-Alpha in Viral and Bacterial Gastroenteritis: A Comparison with C-Reactive Protein and Interleukin-6. Acta Paediatrica, 88, 592-594.
https://doi.org/10.1111/j.1651-2227.1999.tb00004.x |
[73] | Stoycheva, M. and Murdjeva, M. (2005) Serum Levels of Interferon-Gamma, Interleukin-12, Tumour Necrosis Factor-Alpha, and Interleukin-10, and Bacterial Clearance in Patients with Gastroenteric Salmonella Infection. Scandinavian Journal of Infectious Diseases, 37, 11-14. https://doi.org/10.1080/00365540410026068 |
[74] | Katti, M.K. (2011) Assessment of Serum IL-1, IL-2 and IFN-γ Levels in Untreated Pulmonary Tuberculosis Patients: Role in Pathogenesis. Archives of Medical Research, 42, 199-201. https://doi.org/10.1016/j.arcmed.2011.04.012 |
[75] | Nakayama, T., Sonoda, S., Urano, T., Yamada, T. and Okada, M. (1993) Monitoring Both Serum Amyloid Protein A and C-Reactive Protein as Inflammatory Markers in Infectious Diseases. Clinical Chemistry, 39, 293-297.
https://doi.org/10.1093/clinchem/39.2.293 |
[76] | van de Geijn, F.E., et al. (2008) Mannose-Binding Lectin Polymorphisms Are Not Associated with Rheumatoid Arthritis—Confirmation in Two Large Cohorts. Rheumatology (Oxford), 47, 1168-1171.
https://doi.org/10.1093/rheumatology/ken226 |
[77] | Gendrel, D., et al. (1999) Comparison of Procalcitonin with C-Reactive Protein, Interleukin 6 and Interferon-Alpha for Differentiation of Bacterial vs. Viral Infections. The Pediatric Infectious Disease Journal, 18, 875-881.
https://doi.org/10.1097/00006454-199910000-00008 |
[78] | Thurnham, D.I., McCabe, G.P., Northrop-Clewes, C.A. and Nestel, P. (2003) Effects of Subclinical Infection on Plasma Retinol Concentrations and Assessment of Prevalence of Vitamin A Deficiency: Meta-Analysis. The Lancet, 362, 2052-2058. https://doi.org/10.1016/S0140-6736(03)15099-4 |
[79] | Speer, C., Bruns, A. and Gahr, M. (1983) Sequential Determination of CRP, α1-Antitrypsin and Haptoglobin in Neonatal Septicaemia. Acta Paediatrica Scandinavica, 72, 679-683. https://doi.org/10.1111/j.1651-2227.1983.tb09793.x |
[80] | Venge, P., Douhan-H?kansson, L., Garwicz, D., Peterson, C., Xu, S.Y. and Pauksen, K. (2015) Human Neutrophil Lipocalin as a Superior Diagnostic Means to Distinguish between Acute Bacterial and Viral Infections. Clinical and Vaccine Immunology, 22, 1025-1032. https://doi.org/10.1128/CVI.00347-15 |
[81] | Netea, M.G., Kullberg, B.J. and Van der Meer, J.W. (2000) Circulating Cytokines as Mediators of Fever. Clinical Infectious Diseases, 31, S178-S184. https://doi.org/10.1086/317513 |
[82] | Bradley, J.R. (2008) TNF-Mediated Inflammatory Disease. The Journal of Pathology, 214, 149-160.
https://doi.org/10.1002/path.2287 |
[83] | Wang, X., Feuerstein, G.Z., Gu, J.-L., Lysko, P.G. and Yue, T.-L. (1995) Interleukin-1β Induces Expression of Adhesion Molecules in Human Vascular Smooth Muscle Cells and Enhances Adhesion of Leukocytes to Smooth Muscle Cells. Atherosclerosis, 115, 89-98. https://doi.org/10.1016/0021-9150(94)05503-B |
[84] | Andoh, A., et al. (2000) Cytokine Regulation of Chemokine (IL-8, MCP-1, and RANTES) Gene Expression in Human Pancreatic Periacinar Myofibroblasts. Gastroenterology, 119, 211-219. https://doi.org/10.1053/gast.2000.8538 |
[85] | Hollenberg, S.M., Cunnion, R.E. and Parrillo, J.E. (1991) The Effect of Tumor Necrosis Factor on Vascular Smooth Muscle. In Vitro Studies Using Rat Aortic Rings. Chest, 100, 1133-1137. https://doi.org/10.1378/chest.100.4.1133 |
[86] | Gabay, C. and Kushner, I. (1999) Acute-Phase Proteins and Other Systemic Responses to Inflammation. The New England Journal of Medicine, 340, 448-454. https://doi.org/10.1056/NEJM199902113400607 |
[87] | Anh, D.D., et al. (2006) Haemophilus influenzae Type B Meningitis among Children in Hanoi, Vietnam: Epidemiologic Patterns and Estimates of H. influenzae Type B Disease Burden. American Journal of Tropical Medicine and Hygiene, 74, 509-515. https://doi.org/10.4269/ajtmh.2006.74.509 |
[88] | Dubos, F., Moulin, F., Gajdos, V., Breart, G., Gendrel, D. and Chalumeau, M. (2006) Serum Procalcitonin and Other Biologic Markers to Distinguish between Bacterial and Aseptic Meningitis. The Journal of Pediatrics, 149, 72-76.
https://doi.org/10.1016/j.jpeds.2006.02.034 |
[89] | Cunha, B.A. (2006) Distinguishing Bacterial from Viral Meningitis: The Critical Importance of the CSF Lactic Acid Levels. Intensive Care Medicine, 32, 1272-1273; author reply 1274. https://doi.org/10.1007/s00134-006-0210-x |
[90] | Huy, N.T., Thao, N.T.H., Diep, D.T.N., Kikuchi, M., Zamora, J. and Hirayama, K. (2010) Cerebrospinal Fluid Lactate Concentration to Distinguish Bacterial from Aseptic Meningitis: A Systemic Review and Meta-Analysis. Critical Care, 14, Article No. R240. https://doi.org/10.1186/cc9395 |
[91] | Sakushima, K., Hayashino, Y., Kawaguchi, T., Jackson, J.L. and Fukuhara, S. (2011) Diagnostic Accuracy of Cerebrospinal Fluid Lactate for Differentiating Bacterial Meningitis from Aseptic Meningitis: A Meta-Analysis. Journal of Infection, 62, 255-262. https://doi.org/10.1016/j.jinf.2011.02.010 |
[92] | Rajs, G., Finzi-Yeheskel, Z., Rajs, A. and Mayer, M. (2002) C-Reactive Protein Concentrations in Cerebral Spinal Fluid in Gram-Positive and Gram-Negative Bacterial Meningitis. Clinical Chemistry, 48, 591-592.
https://doi.org/10.1093/clinchem/48.3.591 |
[93] | Gerdes, L.U., J?rgenseny, P.E., Nex?, E. and Wang, P. (1998) C-Reactive Protein and Bacterial Meningitis: A Meta-Analysis. Scandinavian Journal of Clinical and Laboratory Investigation, 58, 383-394.
https://doi.org/10.1080/00365519850186364 |
[94] | Prasad, K. and Sahu, J.K. (2011) Cerebrospinal Fluid Lactate: Is It a Reliable and Valid Marker to Distinguish between Acute Bacterial Meningitis and Aseptic Meningitis? Critical Care, 15, Article No. 104. https://doi.org/10.1186/cc9396 |
[95] | Hofmann, S., Grasberger, H., Jung, P., Bidlingmaier, M., Vlotides, J., Janssen, O.E. and Landgraf, R. (2002) The Tumour Necrosis Factor-Alpha Induced Vascular Permeability Is Associated with a Reduction of VE-Cadherin Expression. European Journal of Medical Research, 7, 171-176. |
[96] | Samad, T.A., et al. (2001) Interleukin-1beta-Mediated Induction of Cox-2 in the CNS Contributes to Inflammatory Pain Hypersensitivity. Nature, 410, 471-475. https://doi.org/10.1038/35068566 |
[97] | Tosato, G. and Jones, K.D. (1990) Interleukin-1 Induces Interleukin-6 Production in Peripheral Blood Monocytes. Blood, 75, 1305-1310. https://doi.org/10.1182/blood.V75.6.1305.1305 |
[98] | Falasca, K., et al. (2006) Cytokine Patterns Correlate with Liver Damage in Patients with Chronic Hepatitis B and C. Annals of Clinical & Laboratory Science, 36, 144-150. |
[99] | Kapasi, A.J., Dittrich, S., González, I.J. and Rodwell, T.C. (2016) Host Biomarkers for Distinguishing Bacterial from Non-Bacterial Causes of Acute Febrile Illness: A Comprehensive Review. PLoS ONE, 11, e0160278.
https://doi.org/10.1371/journal.pone.0160278 |
[100] | Sparano, J.A., et al. (2015) Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. The New England Journal of Medicine, 373, 2005-2014. https://doi.org/10.1056/NEJMoa1510764 |
[101] | Castelli, G.P., Pognani, C., Meisner, M., Stuani, A., Bellomi, D. and Sgarbi, L. (2004) Procalcitonin and C-Reactive Protein during Systemic Inflammatory Response Syndrome, Sepsis and Organ Dysfunction. Critical Care, 8, R234-R242. |