|
新生儿败血症诊断的生物标志物的研究进展
|
Abstract:
新生儿败血症(Neonatal Sepsis)是新生儿常见的感染疾病,也是引起新生儿死亡的重要原因之一,报告显示每1000例新生儿中有1至5例患新生儿败血症。新生儿败血症诊断的金标准是血培养,但培养结果需等待48~72小时,且阳性率低,目前主要还是依赖于临床诊断,临床中最常用的生物标志物有白细胞(WBC)、血小板(PLT)、未成熟粒细胞与总中性粒细胞比率(I/T)、C反应蛋白(CRP)和降钙素原(PCT),以上指标需联合运用诊断,才具有一定敏感性及特异性,故目前需寻找一种敏感性、特异性均较高的理想的生物标志物,以满足新生儿败血症的早期准确诊断。本篇综述将介绍除传统非特异性炎症指标之外的新生儿败血症诊断的生物标志物,旨在为新生儿败血症的诊断提供新的思路,为临床实践提供理论依据。
Neonatal sepsis is a common infectious disease in newborns and also is one of the important causes of newborn deaths. Neonatal septicemia is reported in 1 to 5 of every 1000 births. The gold standard for diagnosis of neonatal sepsis is blood culture. However, the results of blood culture need to wait for 48~72 hours, and the positive rate is low. In the present, the diagnosis of neonatal mainly depends on clinical diagnosis standards. The most common biomarkers used in clinical are white blood cells (WBC), platelets (PLT), the ratio of immature granulocytes to total neutrophils (I/T), C-reactive protein (CRP) and procalcitonin (PCT). The above biomarkers need to be combined for diagnosis to have a certain sensitivity and specificity. Therefore, it is necessary to find a signal biomarker with high sensitivity and specificity to satisfy the early and accurate diagnosis of neonatal sepsis. This review will introduce some new biomarkers to diagnose neonatal sepsis, aiming to provide new ideas for the diagnosis of neonatal sepsis and provide a theoretical basis for clinical practice.
[1] | Sharma, D., et al. (2018) Biomarkers for Diagnosis of Neonatal Sepsis: A Literature Review. The Journal of Maternal-Fetal & Neonatal Medicine, 31, 1646-1659. https://doi.org/10.1080/14767058.2017.1322060 |
[2] | 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版) [J]. 中华儿科杂志, 2019, 57(4): 252-257. |
[3] | Shane, A.L., Sanchez, P.J. and Stoll, B.J. (2017) Neonatal Sepsis. The Lancet, 390, 1770-1780.
https://doi.org/10.1016/S0140-6736(17)31002-4 |
[4] | Cantey, J.B. and Lee, J.H. (2021) Biomarkers for the Diagnosis of Neonatal Sepsis. Clinics in Perinatology, 48, 215-227. https://doi.org/10.1016/j.clp.2021.03.012 |
[5] | Sharma, D., Dasi, T., Murki, S. and Oleti, T.P. (2015) Kluyvera ascorbata Sepsis in an Extremely Low Birth Weight Infant. Indian Journal of Medical Microbiology, 33, 437-439. https://doi.org/10.4103/0255-0857.158585 |
[6] | Memar, M.Y., Alizadeh, N., Varshochi, M. and Kafil, H.S. (2019) Immunologic Biomarkers for Diagnostic of Early-Onset Neonatal Sepsis. The Journal of Maternal-Fetal & Neonatal Medicine, 32, 143-153.
https://doi.org/10.1080/14767058.2017.1366984 |
[7] | Chiesa, C., et al. (2003) C-reactive Protein, Interleukin-6, and Procalcitonin in the Immediate Postnatal Period: Influence of Illness Severity, Risk Status, Antenatal and Perinatal Complications, and Infection. Clinical Chemistry, 49, 60-68. https://doi.org/10.1373/49.1.60 |
[8] | Fahmey, S.S. and Mostafa, N. (2019) Pentraxin 3 as a Novel Diagnostic Marker in Neonatal Sepsis. Journal of Neonatal-Perinatal Medicine, 12, 437-442. https://doi.org/10.3233/NPM-190261 |
[9] | Mantovani, A., Garlanda, C., Doni, A. and Bottazzi, B. (2008) Pentraxins in Innate Immunity: From C-Reactive Protein to the Long Pentraxin PTX3. Journal of Clinical Immunology, 28, 1-13.
https://doi.org/10.1007/s10875-007-9126-7 |
[10] | Sabry, A., Ibrahim, M. and Khashana, A. (2021) Assessment of Pentraxin 3 in a Systemic Inflammatory Response Occurring with Neonatal Bacterial Infection. Journal of Neonatal-Perinatal Medicine.
https://doi.org/10.3233/NPM-200550 |
[11] | Tunc, T., et al. (2020) Assessment of Novel Biomarkers: sTREM-1, Pentraxin-3 and Pro-Adrenomedullin in the Early Diagnosis of Neonatal Early Onset Sepsis. Journal of Neonatal-Perinatal Medicine, 13, 47-54.
https://doi.org/10.3233/NPM-180131 |
[12] | Hashem, H.E., et al. (2020) The Utility of Neutrophil CD64 and Presepsin as Diagnostic, Prognostic, and Monitoring Biomarkers in Neonatal Sepsis. International Journal of Microbiology, 2020, Article ID: 8814892.
https://doi.org/10.1155/2020/8814892 |
[13] | El-Madbouly, A.A., El Sehemawy, A.A., Eldesoky, N.A., Abd Elgalil, H.M. and Ahmed, A.M. (2019) Utility of Presepsin, Soluble Triggering Receptor Expressed on Myeloid Cells-1, and Neutrophil CD64 for Early Detection of Neonatal Sepsis. Infection and Drug Resistance, 12, 311-319. https://doi.org/10.2147/IDR.S191533 |
[14] | Dilli, D., Oguz, S.S., Dilmen, U., Yavuz Koker, M. and K?z?lgun, M. (2010) Predictive Values of Neutrophil CD64 Expression Compared with Interleukin-6 and C-Reactive Protein in Early Diagnosis of Neonatal Sepsis. Journal of Clinical Laboratory Analysis, 24, 363-370. https://doi.org/10.1002/jcla.20370 |
[15] | Ng, P.C., Li, K., Wong, R.P., et al. (2002) Neutrophil CD64 Expression: A Sensitive Diagnostic Marker for Late-Onset Nosocomial Infection in Very Low Birthweight Infants. Pediatric Research, 51, 296-303.
https://doi.org/10.1203/00006450-200203000-00006 |
[16] | O’Hare, F.M., et al. (2015) Neutrophil and Monocyte Toll-Like Receptor 4, CD11b and Reactive Oxygen Intermediates, and Neuroimaging Outcomes in Preterm Infants. Pediatric Research, 78, 82-90.
https://doi.org/10.1038/pr.2015.66 |
[17] | Weirich, E., et al. (1998) Neutrophil CD11b Expression as a Diagnostic Marker for Early-Onset Neonatal Infection. The Journal of Pediatrics, 132, 445-451. https://doi.org/10.1016/S0022-3476(98)70018-6 |
[18] | Qiu, X., et al. (2019) Is Neutrophil CD11b a Special Marker for the Early Diagnosis of Sepsis in Neonates? A Systematic Review and Meta-Analysis. BMJ Open, 9, e025222. https://doi.org/10.1136/bmjopen-2018-025222 |
[19] | Rohil, A., et al. (2021) Cell-Surface Biomarkers, C-Reactive Protein and Haematological Parameters for Diagnosing Late Onset Sepsis in Pre-Term Neonates. Journal of Tropical Pediatrics, 67, fmab016.
https://doi.org/10.1093/tropej/fmab016 |
[20] | Tzialla, C., et al. (2018) New Diagnostic Possibilities for Neonatal Sepsis. American Journal of Perinatology, 35, 575-577. https://doi.org/10.1055/s-0038-1639361 |
[21] | Degirmencioglu, H., et al. (2019) Presepsin and Fetuin-A Dyad for the Diagnosis of Proven Sepsis in Preterm Neonates. BMC Infectious Diseases, 19, 695. https://doi.org/10.1186/s12879-019-4316-5 |
[22] | Zheng, Z., et al. (2015) The Accuracy of Presepsin for the Diagnosis of Sepsis from SIRS: A Systematic Review and Meta-Analysis. Annals of Intensive Care, 5, 48. https://doi.org/10.1186/s13613-015-0089-1 |
[23] | Poggi, C., Bianconi, T., Gozzini, E., Generoso, M. and Dani, C. (2015) Presepsin for the Detection of Late-Onset Sepsis in Preterm Newborns. Pediatrics, 135, 68-75. https://doi.org/10.1542/peds.2014-1755 |
[24] | Parri, N., Trippella, G., Lisi, C., De Martino, M., Galli, L. and Chiappini, E. (2019) Accuracy of Presepsin in Neonatal Sepsis: Systematic Review and Meta-Analysis. Expert Review of Anti-Infective Therapy, 17, 223-232.
https://doi.org/10.1080/14787210.2019.1584037 |
[25] | Machado, J.R., et al. (2014) Neonatal Sepsis and Inflammatory Mediators. Mediators of Inflammation, 2014, Article ID: 269681. https://doi.org/10.1155/2014/269681 |
[26] | Chauhan, N., Tiwari, S. and Jain, U. (2017) Potential Biomarkers for Effective Screening of Neonatal Sepsis Infections: An Overview. Microbial Pathogenesis, 107, 234-242. https://doi.org/10.1016/j.micpath.2017.03.042 |
[27] | Froeschle, G.M., et al. (2020) T Cell Cytokines in the Diagnostic of Early-Onset Sepsis. Pediatric Research.
https://doi.org/10.1038/s41390-020-01248-x |
[28] | Dreschers, S., Ohl, K., Schulte, N., Tenbrock, K. and Orlikowsky, T.W. (2020) Impaired Functional Capacity of Polarised Neonatal Macrophages. Scientific Reports, 10, Article No. 624. https://doi.org/10.1038/s41598-019-56928-4 |
[29] | Sherwin, C., et al. (2008) Utility of Interleukin-12 and Interleukin-10 in Comparison with Other Cytokines and Acute-Phase Reactants in the Diagnosis of Neonatal Sepsis. American Journal of Perinatology, 25, 629-636.
https://doi.org/10.1055/s-0028-1090585 |
[30] | Wang, Q., et al. (2021) The Value of Interleukin-10 in the Early Diagnosis of Neonatal Sepsis: A Meta-Analysis. Pediatric Critical Care Medicine, 22, e492-e501. https://doi.org/10.1097/PCC.0000000000002706 |
[31] | Dugas, B., et al. (1993) Interleukin-9 Potentiates the Interleukin-4-Induced Immunoglobulin (IgG, IgM and IgE) Production by Normal Human B Lymphocytes. European Journal of Immunology, 23, 1687-1692.
https://doi.org/10.1002/eji.1830230743 |
[32] | Liu, J., et al. (2015) Association of IL-21 Polymorphisms (rs907715, rs2221903) with Susceptibility to Multiple Autoimmune Diseases: A Meta-Analysis. Autoimmunity, 48, 108-116. https://doi.org/10.3109/08916934.2014.944262 |
[33] | Kuchen, S., et al. (2007) Essential Role of IL-21 in B Cell Activation, Expansion, and Plasma Cell Generation during CD4+ T Cell-B Cell Collaboration. The Journal of Immunology, 179, 5886-5896.
https://doi.org/10.4049/jimmunol.179.9.5886 |
[34] | Fatmi, A., et al. (2020) miRNA-23b as a Biomarker of Culture-Positive Neonatal Sepsis. Molecular Medicine, 26, 94.
https://doi.org/10.1186/s10020-020-00257-0 |
[35] | Lin, X. and Wang, Y. (2021) miR-141 Is Negatively Correlated with TLR4 in Neonatal Sepsis and Regulates LPS-Induced Inflammatory Responses in Monocytes. Brazilian Journal of Medical and Biological Research, 54, e10603. https://doi.org/10.1590/1414-431x2020e10603 |
[36] | Schuller, S.S., et al. (2017) Pentoxifylline Modulates LPS-Induced Hyperinflammation in Monocytes of Preterm Infants in Vitro. Pediatric Research, 82, 215-225. https://doi.org/10.1038/pr.2017.41 |
[37] | Altuvia, Y., et al. (2005) Clustering and Conservation Patterns of Human microRNAs. Nucleic Acids Research, 33, 2697-2706. https://doi.org/10.1093/nar/gki567 |
[38] | El-Hefnawy, S.M., et al. (2021) Biochemical and Molecular Study on Serum miRNA-16a and miRNA-451 as Neonatal Sepsis Biomarkers. Biochemistry and Biophysics Reports, 25, Article ID: 100915.
https://doi.org/10.1016/j.bbrep.2021.100915 |
[39] | Wang, H., et al. (2012) Serum microRNA Signatures Identified by Solexa Sequencing Predict Sepsis Patients’ Mortality: A Prospective Observational Study. PLoS ONE, 7, e38885. https://doi.org/10.1371/journal.pone.0038885 |
[40] | Chen, J., Jiang, S.Y., Cao, Y. and Yang, Y. (2014) Altered miRNAs Expression Profiles and Modulation of Immune Response Genes and Proteins during Neonatal Sepsis. Journal of Clinical Immunology, 34, 340-348.
https://doi.org/10.1007/s10875-014-0004-9 |
[41] | Fouda, E., et al. (2021) The Diagnostic and Prognostic Role of MiRNA 15b and MiRNA 378a in Neonatal Sepsis. Biochemistry and Biophysics Reports, 26, Article ID: 100988. https://doi.org/10.1016/j.bbrep.2021.100988 |
[42] | Chen, X., et al. (2020) MiR-96-5p Alleviates Inflammatory Responses by Targeting NAMPT and Regulating the NF-kappaB Pathway in Neonatal Sepsis. Bioscience Reports, 40, BSR20201267.
https://doi.org/10.1042/BSR20201267 |
[43] | Cheng, Q., Tang, L. and Wang, Y. (2018) Regulatory Role of miRNA-26a in Neonatal Sepsis. Experimental and Therapeutic Medicine, 16, 4836-4842. https://doi.org/10.3892/etm.2018.6779 |
[44] | Ng, P.C., et al. (2019) Plasma miR-1290 Is a Novel and Specific Biomarker for Early Diagnosis of Necrotizing Enterocolitis-Biomarker Discovery with Prospective Cohort Evaluation. The Journal of Pediatrics, 205, 83-90.e10.
https://doi.org/10.1016/j.jpeds.2018.09.031 |