|
有限非交换单群上的10度1-正则Cayley图
|
Abstract:
称Cayley图Γ=Cay(G,S)是1-正则的,如果的全自同构群Aut(Γ)作用在其弧集上正则。称Γ是正规的,如果G?Aut(Γ)。在本文中, 我们证明了有限非交换单群上的连通10度1-正则Cayley图一定是正规的。
A Cayley graph Γ=Cay(G,S) is said to be 1-regular, if the full automorphism group Aut(Γ) of Γ acts regularly on the arc set of Γ. And Γ is called normal if G?Aut(Γ). In this paper, we prove 10-valent 1-regular Cayley graphs on finite nonabelian simple groups must be normal.
[1] | Biggs, N. (1992) Algebraic Graph Theory. 2nd Edition, Cambridge University Press, Cambridge. |
[2] | Xu, M.Y. (1998) Automorphism Groups and Isomorphisms of Cayley Digraphs. Discrete Mathematics, 182, 309-319.
https://doi.org/10.1016/S0012-365X(97)00152-0 |
[3] | Du, J.L. and Feng, Y.Q. (2019) Tetravalent 2-Arc-Transitive Cayley Graphs on Non-Abelian Simplegroups. Communications in Algebra, 47, 4565-4574. https://doi.org/10.1080/00927872.2018.1549661 |
[4] | Du, J.L., Feng, Y.Q. and Zhou, J.X. (2017) Pentavalent Symmetric Graphs Admitting Vertex-Transitivenon-Abelian Simple Groups. European Journal of Combinatorics, 63, 134-145. https://doi.org/10.1016/j.ejc.2017.03.007 |
[5] | Fang, X.G., Wang, J., Zhou, S.M. (2021) Classification of Tetravalent 2-Transitive Nonnormal Cayley Graphs of Finite Simple Groups. Bulletin of the Australian Mathematical Society, 104, 263-271.
https://doi.org/10.1017/S0004972720001446 |
[6] | Li, C.H. (1996) Isomorphisms of Finite Cayley Graphs. Ph.D. Thesis, The University of Western Australia, Crawley. |
[7] | Li, J.J., Ling, B. and Ma, J.C. (2017) On Tetravalent S-Regular Cayley Graphs. Journal of Algebra and Its Applications, 16, Article ID: 1750195. https://doi.org/10.1142/S021949881750195X |
[8] | Xu, S.J., Fang, X.G., Wang, J. and Xu, M.Y. (2005) On Cubic S-Arc-Transitive Cayley Graphs of Finite Simple Groups. European Journal of Combinatorics, 26, 133-143. https://doi.org/10.1016/j.ejc.2003.10.015 |
[9] | Xu, S.J., Fang, X.G., Wang, J. and Xu, M.Y. (2007) 5-Arc Transitive Cubic Cayley Graphs on Finite Simple Groups. European Journal of Combinatorics, 28, 1023-1036. https://doi.org/10.1016/j.ejc.2005.07.020 |
[10] | Dixon, J.D. and Mortimer, B. (1996) Permutation Groups. Springer-Verlag, New York, Berlin, Heidelberg.
https://doi.org/10.1007/978-1-4612-0731-3 |
[11] | Li, J.J. and Lu, Z.P. (2009) Cubic S-Transitive Cayley Graphs. Discrete Mathematics, 309, 6014-6025.
https://doi.org/10.1016/j.disc.2009.05.002 |
[12] | Praeger, C.E. (1992) An O’Nan-Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2-Arc-Transitive Graphs. Journal of the London Mathematical Society, s2-47, 227-239.
https://doi.org/10.1112/jlms/s2-47.2.227 |
[13] | Li, C.H. and Pan, J.M. (2008) Finite 2-Arc-Transitive Abelian Cayley Graphs. European Journal of Combinatorics, 29, 148-158. https://doi.org/10.1016/j.ejc.2006.12.001 |
[14] | Roney-Dougal, C.M. (2005) The Primitive Permutation Groups of Degree Less than 2500. Journal of Algebra, 292, 154-183. https://doi.org/10.1016/j.jalgebra.2005.04.017 |
[15] | Bosma, W., Cannon, C. and Playoust, C. (1997) The MAGMA Algebra System I: The User Language. Journal of Symbolic Computation, 24, 235-265. https://doi.org/10.1006/jsco.1996.0125 |