|
两类生长曲线模型的参数辨识及对疫情数据的拟合
|
Abstract:
本文研究了Logistic和Richards两类种群生长模型的差异。Logistic方程是Richards方程异速增长参数取定值2的特例。从微分方程出发,我们求出了两类生长方程的显式通解,通过取对数、求导、换元和差分等操作,利用线性最小二乘法对参数进行估计,最后结合湖南省的新冠疫情实例对比说明Logistic和Richards增长曲线方程的适用性及参数估计的有效性。
The differences between Logistic and Richards population growth models were studied. The Logistic equation is a special case of the constant value 2 of allometric growth parameter of Richards equation. Starting from the differential equation, we calculate the growth equations of the two kinds of explicit conditions and by the exponential, derivation, changing and difference operations such as, using the linear least square method to estimate the parameters, and finally combined with the outbreak of the new champions league of Hunan Province to explain the applicability of Logistic and Richards growth curve equation and the validity of parameter estimation.
[1] | 李凤日, 吴俊民, 鲁胜利. Richards函数与Schnute生长模型的比较[J]. 东北林业大学学报, 1993(4): 15-24. |
[2] | 陈华豪, 徐文科. 生物种群动态数学模型的参数辨识方法[J]. 农业系统科学与综合研究, 1993(1): 1-5+50. |
[3] | 邢黎峰, 孙明高, 王元军. 生物生长的Richards模型[J]. 生物数学学报, 1998, 13(3): 348-353. |
[4] | 吴新元. 逻辑斯谛曲线拟合的一种数值方法[J]. 生物数学学报, 1990(1): 26-32. |
[5] | 魏冠军, 党亚民. 基于Bayes理论的Logistic增长曲线模型参数估计方法研究[J]. 工程勘察, 2012, 40(5): 64-67. |
[6] | 徐文科, 张石生. 生物种群Logistic模型双向差分拟合方法及对初始预报值的改进[J]. 农业系统科学与综合研究, 1997(1): 1-3+9. |
[7] | 徐文科. 基于微分方程的生态数学模型统计分析[D]: [博士学位论文]. 哈尔滨: 东北林业大学, 2009. |
[8] | 刘洋, 徐文科. Gompertz增长曲线方程的参数估计及对初始预报值的优化[J]. 黑龙江大学自然科学学报, 2015, 32(5): 600-606. |
[9] | 乔钰, 徐文科. Richards增长曲线的参数估计[J]. 哈尔滨师范大学自然科学学报, 2015, 31(5): 23-26. |
[10] | 乔钰. Richards增长曲线方程及其方程组的参数估计[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2017. |
[11] | 焦莹莹. 基于Richards增长曲线的全球新冠疫情分析[D]: [硕士学位论文]. 哈尔滨: 黑龙江大学, 2021. |
[12] | Liu, Z.G. and Li, F.R. (2003) The Generalized Chapman-Richards Function and Applications to Tree and Stand Growth. Journal of Forestry Research, 14, 19-26. https://doi.org/10.1007/BF02856757 |