全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2021 

外周神经损伤修复研究进展
Research Progress of Peripheral Nerve Injury Repair

DOI: 10.12677/BP.2021.114009, PP. 76-84

Keywords: 外周神经修复再生,施万细胞,营养因子,神经移植物
Peripheral Nerve Repair and Regen-eration
, Schwann Cell, Neurotrophic Factor, Nerve Graft

Full-Text   Cite this paper   Add to My Lib

Abstract:

外周神经损伤是一种常见的损伤类疾病,目前治疗手段主要有显微外科手术、自体神经移植、异体神经移植和组织工程技术。目前治疗过程的主要瓶颈是供体神经的严重不足。现有研究指出影响修复过程因素主要包括:施万细胞、生长因子、细胞外基质等等。目前由于供体神经缺乏及外科手术精细度限制,组织工程技术结合了种子细胞、营养因子及支架材料,使得长间隙及粗大神经受损患者的康复具有可行性。我们相信随着科技发展,外周神经损伤类疾病的治疗与康复终会取得良好的临床效果。
There are four main therapies to cure peripheral nerve injury, which is a common injury disease, microsurgery, autologous nerve graft, nerve allograft and tissue engineering technology. The main block of current treatment process is the serious shortage of donor nerves. Existing research points out that the main factors affecting the repair process include: Schwann cells, growth factors, extracellular matrix, etc. At present, due to the lack of donor nerves and the limitation of surgical precision, tissue engineering technology combines seed cells, nutrient factors and scaffold materials, making the rehabilitation of patients with long gaps and large nerve damage feasible. We believe that with the development of science and technology, the treatment and rehabilitation of peripheral nerve injury diseases will eventually achieve good clinical results.

References

[1]  Jessen, K.R. and Mirsky, R. (2008) Negative Regulation of Myelination: Relevance for Development, Injury, and Demy-elinating Disease. Glia, 56, 1552-1565.
https://doi.org/10.1002/glia.20761
[2]  Wu, D. and Murashov, A.K. (2013) Molecular Mechanisms of Peripheral Nerve Regeneration: Emerging Roles of microRNAs. Frontiers in Physiology, 4, 55.
https://doi.org/10.3389/fphys.2013.00055
[3]  韦正超, 等. 医源性外周神经损伤临床治疗分析[J]. 中华显微外科杂志, 2002, 25(2): 152-153.
[4]  莫忠贵. 显微手术治疗外周神经损伤78例临床分析[J]. 微创医学, 2(6): 571-572.
[5]  袁华军. 外周神经损伤修复技术的研究进展[J]. 广西医学, 2009, 31(11): 1718-1720.
[6]  Piao, C., et al. (2020) Mechanical Properties of the Sciatic Nerve Following Combined Transplantation of Analytically Extracted Acellular Allogeneic Nerve and Adipose-Derived Mesenchymal Stem Cells. Acta Cirurgica Brasileira, 35, e202000405.
[7]  Niemi, J.P., et al. (2013) A Critical Role for Macrophages Near Axotomized Neuronal Cell Bodies in Stimulating Nerve Regeneration. The Journal of Neuroscience, 33, 16236-16248.
https://doi.org/10.1523/JNEUROSCI.3319-12.2013
[8]  Sunderland, S. (1951) A Classification of Peripheral Nerve Injuries Producing Loss of Function. Brain, 74, 491-516.
https://doi.org/10.1093/brain/74.4.491
[9]  Hall, S. (2005) The Response to Injury in the Peripheral Nervous Sys-tem. The Journal of Bone and Joint Surgery, British Volume, 87, 1309-1319.
https://doi.org/10.1302/0301-620X.87B10.16700
[10]  Gaudet, A.D., Popovich, P.G. and Ramer, M.S. (2011) Wallerian Degeneration: Gaining Perspective on Inflammatory Events after Peripheral Nerve Injury. Journal of Neuroin-flammation, 8, Article No. 110.
https://doi.org/10.1186/1742-2094-8-110
[11]  Nocera, G. and Jacob, C. (2020) Mechanisms of Schwann Cell Plasticity Involved in Peripheral Nerve Repair after Injury. Cellular and Molecular Life Sciences: CMLS, 77, 3977-3989.
https://doi.org/10.1007/s00018-020-03516-9
[12]  Chaudhry, V., Glass, J.D. and Griffin, J.W. (1992) Wallerian Degeneration in Peripheral Nerve Disease. Neurologic Clinics, 10, 613-627.
https://doi.org/10.1016/S0733-8619(18)30200-7
[13]  Ydens, E., et al. (2020) Profiling Peripheral Nerve Macro-phages Reveals Two Macrophage Subsets with Distinct Localization, Transcriptome and Response to Injury. Nature Neuroscience, 23, 676-689.
https://doi.org/10.1038/s41593-020-0618-6
[14]  Mirsky, R. and Jessen, K.R. (1999) The Neurobiology of Schwann Cells. Brain Pathology (Zurich, Switzerland), 9, 293-311.
https://doi.org/10.1111/j.1750-3639.1999.tb00228.x
[15]  Gu, X., et al. (2011) Construction of Tissue Engineered Nerve Grafts and Their Application in Peripheral Nerve Regeneration. Progress in Neurobiology, 93, 204-230.
https://doi.org/10.1016/j.pneurobio.2010.11.002
[16]  Perkins, N.M. and Tracey, D.J. (2000) Hyperalgesia Due to Nerve Injury: Role of Neutrophils. Neuroscience, 101, 745-757.
https://doi.org/10.1016/S0306-4522(00)00396-1
[17]  Mueller, M., et al. (2003) Macrophage Response to Periph-eral Nerve Injury: The Quantitative Contribution of Resident and Hematogenous macrOphages. Laboratory Investigation, 83, 175-185.
https://doi.org/10.1097/01.LAB.0000056993.28149.BF
[18]  Zigmond, R.E. and Echevarria, F.D. (2019) Macro-phage Biology in the Peripheral Nervous System after Injury. Progress in Neurobiology, 173, 102-121.
https://doi.org/10.1016/j.pneurobio.2018.12.001
[19]  王玉江. 雪旺氏细胞与神经再生的研究进展[J]. 神经解剖学杂志, 1992, 8(2): 163-169.
[20]  Crang, A.J. and Blakemore, W.F. (1986) Observations on Wallerian Degeneration in Explant Cultures of Cat Sciatic Nerve. Journal of Neurocytology, 15, 471-482.
https://doi.org/10.1007/BF01611730
[21]  Jessen, K.R. and Mirsky, R. (2016) The Repair Schwann Cell and Its Function in Regenerating Nerves. The Journal of Physiology, 594, 3521-3531.
https://doi.org/10.1113/JP270874
[22]  金理正, 方马荣, 沈忠飞. 雪旺氏细胞在周围神经损伤修复中的作用[J]. 四川解剖学杂志, 2004, 12(2): 184-185.
[23]  Glenn, T.D. and Talbot, W.S. (2013) Signals Regulating Myelination in Peripheral Nerves and the Schwann Cell Response to Injury. Current Opinion in Neurobiology, 23, 1041-1048.
https://doi.org/10.1016/j.conb.2013.06.010
[24]  Lim, H., et al. (2014) Label-Free Imaging of Schwann Cell Mye-lination by Third Harmonic Generation Microscopy. Proceedings of the National Academy of Sciences of the United States of America, 111, 18025-18030.
https://doi.org/10.1073/pnas.1417820111
[25]  阿德尔曼, 主编. 神经科学百科全书[M]. 《神经科学百科全书》翻译编辑委员会, 译. 伯克豪伊萨尔出版社; 上海科学技术出版社, 1992.
[26]  Eva, R. and Fawcett, J. (2014) Integrin Signalling and Traffic During Axon Growth and Regeneration. Current Opinion in Neurobiology, 27, 179-185.
https://doi.org/10.1016/j.conb.2014.03.018
[27]  Eva, R., et al. (2017) EFA6 Regulates Selective Polarised Transport and Axon Regeneration from the Axon Initial Segment. Journal of Cell Science, 130, 3663-3675.
https://doi.org/10.1242/jcs.207423
[28]  Wanner, I.B. and Wood, P.M. (2002) N-Cadherin Mediates Axon-Aligned Process Growth and Cell-Cell Interaction in Rat Schwann Cells. The Journal of Neuroscience, 22, 4066-4079.
https://doi.org/10.1523/JNEUROSCI.22-10-04066.2002
[29]  Duraikannu, A., et al. (2019) Beyond Trophic Fac-tors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Frontiers in Cellular Neuroscience, 13, 128.
https://doi.org/10.3389/fncel.2019.00128
[30]  Mehta, P. and Piao, X. (2017) Adhesion G-Protein Coupled Recep-tors and Extracellular Matrix Proteins: Roles in Myelination and Glial Cell Development. Developmental Dynamics, 246, 275-284.
https://doi.org/10.1002/dvdy.24473
[31]  Chang, H.Y., et al. (2002) Diversity, Topographic Differentia-tion, and Positional Memory in Human Fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99, 12877-12882.
https://doi.org/10.1073/pnas.162488599
[32]  Woodhoo, A. and Sommer, L. (2008) Development of the Schwann Cell Lineage: From the Neural Crest to the Myelinated Nerve. Glia, 56, 1481-1490.
https://doi.org/10.1002/glia.20723
[33]  Bunge, R.P., Bunge, M.B. and Cochran, M. (1978) Some Factors Influ-encing the Proliferation and Differentiation of Myelin-Forming Cells. Neurology, 28, 59-67.
https://doi.org/10.1212/WNL.28.9_Part_2.59
[34]  吴艳青, 肖健, 李校堃. 成纤维细胞生长因子在神经损伤修复中作用的研究进展[J]. 药学进展, 2019, 43(1): 12-18.
[35]  Thomas, P.K. (1963) The Connective Tissue of Periph-eral Nerve: An Electron Microscope Study. Journal of Anatomy, 97, 35-44.
[36]  Kim, H.A., Mindos, T. and Parkinson, D.B. (2013) Plastic Fantastic: Schwann Cells and Repair of the Peripheral Nervous System. Stem Cells Translational Medicine, 2, 553-557.
https://doi.org/10.5966/sctm.2013-0011
[37]  Bonnekoh, P.G., Scheidt, P. and Friede, R.L. (1989) Myelin Phagocytosis by Peritoneal Macrophages in Organ Cultures of Mouse Peripheral Nerve. A New Model for Studying Myelin Phagocytosis in Vitro. Journal of Neuropathology and Experimental Neurology, 48, 140-153.
https://doi.org/10.1097/00005072-198903000-00002
[38]  Kim, H.-S., et al. (2020) Directly Induced Human Schwann Cell Precursors as a Valuable Source of Schwann Cells. Stem Cell Research & Therapy, 11, Article No. 257.
https://doi.org/10.1186/s13287-020-01772-x
[39]  Conforti, L., Gilley, J. and Coleman, M.P. (2014) Wallerian De-generation: An Emerging Axon Death Pathway Linking Injury and Disease. Nature Reviews. Neuroscience, 15, 394-409.
https://doi.org/10.1038/nrn3680
[40]  Gamage, K.K., et al. (2017) Death Receptor 6 Promotes Wallerian Degenera-tion in Peripheral Axons. Current Biology: CB, 27, 890-896.
https://doi.org/10.1016/j.cub.2017.01.062
[41]  Chen, P., Piao, X. and Bonaldo, P. (2015) Role of Macrophages in Wallerian Degeneration and Axonal Regeneration after Pe-ripheral Nerve Injury. Acta Neuropathologica, 130, 605-618.
https://doi.org/10.1007/s00401-015-1482-4
[42]  Pearce, J.M. (2000) Wallerian Degeneration. Journal of Neurolo-gy, Neurosurgery, and Psychiatry, 69, 791.
https://doi.org/10.1136/jnnp.69.6.791
[43]  Millesi, H. (1982) Microsurgery of Peripheral Nerves. Annales Chirur-giae et Gynaecologiae, 71, 56-64.
[44]  Ebadi, M., et al. (1997) Neurotrophins and Their Receptors in Nerve Injury and Repair. Neurochemistry International, 30, 347-374.
https://doi.org/10.1016/S0197-0186(96)00071-X
[45]  Jung, M., et al. (2017) IL-10 Improves Cardiac Remodeling after Myocardial Infarction by Stimulating M2 Macrophage Polar-ization and Fibroblast Activation. Basic Research in Cardiology, 112, Article No. 33.
https://doi.org/10.1007/s00395-017-0622-5
[46]  Siqueira Mietto, B., et al. (2015) Role of IL-10 in Resolution of Inflammation and Functional Recovery after Peripheral Nerve Injury. The Journal of Neuroscience, 35, 16431-16442.
https://doi.org/10.1523/JNEUROSCI.2119-15.2015
[47]  Fok-Seang, J., et al. (1998) Cytokine-Induced Changes in the Ability of Astrocytes to Support Migration of Oligodendrocyte Precursors and Axon Growth. The European Journal of Neuroscience, 10, 2400-2415.
https://doi.org/10.1046/j.1460-9568.1998.00251.x
[48]  Leibinger, M., et al. (2021) Transneuronal Delivery of Hy-per-Interleukin-6 Enables Functional Recovery after Severe Spinal Cord Injury in Mice. Nature Communications, 12, Article No. 391.
https://doi.org/10.1038/s41467-020-20112-4
[49]  Vidal, P.M., et al. (2013) The Role of “An-ti-Inflammatory” Cytokines in Axon Regeneration. Cytokine & Growth Factor Reviews, 24, 1-12.
https://doi.org/10.1016/j.cytogfr.2012.08.008
[50]  Cunha, M.I., et al. (2020) Pro-Inflammatory Activation Follow-ing Demyelination Is Required for Myelin Clearance and Oligodendrogenesis. The Journal of Experimental Medicine, 217, e20191390
https://doi.org/10.1084/jem.20191390
[51]  Qin, Y., et al. (2008) TNF-Alpha as an Autocrine Mediator and Its Role in the Activation of Schwann Cells. Neurochemical Research, 33, 1077-1084.
https://doi.org/10.1007/s11064-007-9552-1
[52]  王开强, 刘俊宾, 毕好生. 大鼠外周神经损伤后局部肿瘤坏死因子α在神经病理痛发生中的作用[J]. 中华麻醉学杂志, 2002, 22(8): 477-479.
[53]  Zhang, H., Zhang, H. and Dougherty, P.M. (2013) Dynamic Effects of TNF-α on Synaptic Transmission in Mice over Time Following Sciatic Nerve Chronic Constriction Injury. Journal of Neurophysiology, 110, 1663-1671.
https://doi.org/10.1152/jn.01088.2012
[54]  Brück, W. (1997) The Role of Macrophages in Wallerian Degeneration. Brain Pathology (Zurich, Switzerland), 7, 741-752.
https://doi.org/10.1111/j.1750-3639.1997.tb01060.x
[55]  Chen, P., et al. (2015) Collagen VI Regulates Peripheral Nerve Regeneration by Modulating Macrophage Recruitment and Po-larization. Acta Neuropathologica, 129, 97-113.
https://doi.org/10.1007/s00401-014-1369-9
[56]  Jeub, M., et al. (2020) Reduced Inflammatory Response and Accelerated Functional Recovery Following Sciatic Nerve Crush Lesion in CXCR3-Deficient Mice. Neuroreport, 31, 672-677.
https://doi.org/10.1097/WNR.0000000000001468
[57]  Lu, C.-Y., et al. (2020) Macrophage-Derived Vascular Endothelial Growth Factor-A Is Integral to Neuromuscular Junction Reinnervation after Nerve Injury. The Journal of Neuroscience, 40, 9602-9616.
https://doi.org/10.1523/JNEUROSCI.1736-20.2020
[58]  Gordon, T. (2009) The Role of Neurotrophic Factors in Nerve Regeneration. Neurosurgical Focus, 26, E3.
https://doi.org/10.3171/FOC.2009.26.2.E3
[59]  Razavi, S., et al. (2015) Neurotrophic Factors and Their Effects in the Treatment of Multiple Sclerosis. Advanced Biomedical Research, 4, 53.
https://doi.org/10.4103/2277-9175.151570
[60]  Nockher, W.A. and Renz, H. (2003) Neurotrophins in Inflamma-tory Lung Diseases: Modulators of Cell Differentiation and Neuroimmune Interactions. Cytokine & Growth Factor Re-views, 14, 559-578.
https://doi.org/10.1016/S1359-6101(03)00071-6
[61]  Li, R., et al. (2020) Nerve Growth Factor Activates Autoph-agy in Schwann Cells to Enhance Myelin Debris Clearance and to Expedite Nerve Regeneration. Theranostics, 10, 1649-1677.
https://doi.org/10.7150/thno.40919
[62]  Allen, S.J., et al. (2013) GDNF, NGF and BDNF as Thera-peutic Options for Neurodegeneration. Pharmacology & Therapeutics, 138, 155-175.
https://doi.org/10.1016/j.pharmthera.2013.01.004
[63]  Hatzenbuehler, J. (2015) Peripheral Nerve Injury. Current Sports Medicine Reports, 14, 356-357.
https://doi.org/10.1249/JSR.0000000000000186
[64]  尚宇阳, 辛畅泰, 安贵林. 自体周围神经移植的研究进展[J]. 中国实用手外科杂志, 2001, 15(1): 41-44.
[65]  Jiang, B., Zhang, P. and Jiang, B. (2010) Advances in Small Gap Sleeve Bridging Peripheral Nerve Injury. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 38, 1-4.
https://doi.org/10.3109/10731190903495652
[66]  Alluin, O., et al. (2009) Functional Recovery after Peripheral Nerve Injury and Implantation of a Collagen Guide. Biomaterials, 30, 363-373.
https://doi.org/10.1016/j.biomaterials.2008.09.043
[67]  修先伦, 等. 侧侧缝合法治疗不完全性周围神经损伤的实验研究[J]. 中国矫形外科杂志, 2001, 8(10): 984-985.
[68]  张文韬, 姜可, 王军虎. 周围神经损伤的显微外科修复[J]. 美中国际创伤杂志, 2009, 8(3): 44+29.
[69]  张伟, 侯春林. 神经移植术修复周围神经损伤[J]. 国际骨科学杂志, 2002, 23(2): 98-101.
[70]  袁伟东, 等. 4种自体神经移植方法修复周围神经缺损比较的实验研究[J]. 中国煤炭工业医学杂志, 2008, 11(1): 81-84.
[71]  王爱民, 等. 血循环因素在鼠周围神经移植修复脊髓损伤中的作用[J]. 中华神经外科杂志, 1996, 12(3): 160-163.
[72]  孙占胜, 邱春晖, 赵孔波. 游离神经移植修复周围神经缺损100例[J]. 山东医药, 2003, 43(27): 21-22.
[73]  张冰, 唐林俊. 同种异体神经移植的研究进展[J]. 四川医学, 2014(12): 1595-1597.
[74]  杨润功, 等. 去细胞同种异体神经移植修复周围神经缺损临床安全性研究[J]. 中华外科杂志, 2012, 50(1): 74-76.
[75]  Sugita, N., et al. (2004) Interposed Autologous Nerve Segment Stimulates Nerve Re-generation in Peripheral Nerve Allografts in a Rat Model. Journal of Reconstructive Microsurgery, 20, 167-174.
https://doi.org/10.1055/s-2004-820774
[76]  杨洁, 等. 组织工程学修复周围神经损伤的研究进展[J]. 齐齐哈尔医学院学报, 2011, 32(9): 1457-1458.
[77]  张文怡. 周围神经组织工程学修复的研究进展[J]. 锦州医科大学学报, 2003, 24(5): 52-54.
[78]  陈勇, 等. 神经导管支架修复外周神经损伤的研究与现状[J]. 中国组织工程研究, 2017, 21(30): 4901-4907.
[79]  周经, 杨晓楠, 祁佐良. 复合型神经导管与周围神经修复[J]. 中华整形外科杂志, 2019, 35(3): 314-318.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133