|
Bioprocess 2021
外周神经损伤修复研究进展
|
Abstract:
[1] | Jessen, K.R. and Mirsky, R. (2008) Negative Regulation of Myelination: Relevance for Development, Injury, and Demy-elinating Disease. Glia, 56, 1552-1565. https://doi.org/10.1002/glia.20761 |
[2] | Wu, D. and Murashov, A.K. (2013) Molecular Mechanisms of Peripheral Nerve Regeneration: Emerging Roles of microRNAs. Frontiers in Physiology, 4, 55. https://doi.org/10.3389/fphys.2013.00055 |
[3] | 韦正超, 等. 医源性外周神经损伤临床治疗分析[J]. 中华显微外科杂志, 2002, 25(2): 152-153. |
[4] | 莫忠贵. 显微手术治疗外周神经损伤78例临床分析[J]. 微创医学, 2(6): 571-572. |
[5] | 袁华军. 外周神经损伤修复技术的研究进展[J]. 广西医学, 2009, 31(11): 1718-1720. |
[6] | Piao, C., et al. (2020) Mechanical Properties of the Sciatic Nerve Following Combined Transplantation of Analytically Extracted Acellular Allogeneic Nerve and Adipose-Derived Mesenchymal Stem Cells. Acta Cirurgica Brasileira, 35, e202000405. |
[7] | Niemi, J.P., et al. (2013) A Critical Role for Macrophages Near Axotomized Neuronal Cell Bodies in Stimulating Nerve Regeneration. The Journal of Neuroscience, 33, 16236-16248.
https://doi.org/10.1523/JNEUROSCI.3319-12.2013 |
[8] | Sunderland, S. (1951) A Classification of Peripheral Nerve Injuries Producing Loss of Function. Brain, 74, 491-516.
https://doi.org/10.1093/brain/74.4.491 |
[9] | Hall, S. (2005) The Response to Injury in the Peripheral Nervous Sys-tem. The Journal of Bone and Joint Surgery, British Volume, 87, 1309-1319. https://doi.org/10.1302/0301-620X.87B10.16700 |
[10] | Gaudet, A.D., Popovich, P.G. and Ramer, M.S. (2011) Wallerian Degeneration: Gaining Perspective on Inflammatory Events after Peripheral Nerve Injury. Journal of Neuroin-flammation, 8, Article No. 110.
https://doi.org/10.1186/1742-2094-8-110 |
[11] | Nocera, G. and Jacob, C. (2020) Mechanisms of Schwann Cell Plasticity Involved in Peripheral Nerve Repair after Injury. Cellular and Molecular Life Sciences: CMLS, 77, 3977-3989. https://doi.org/10.1007/s00018-020-03516-9 |
[12] | Chaudhry, V., Glass, J.D. and Griffin, J.W. (1992) Wallerian Degeneration in Peripheral Nerve Disease. Neurologic Clinics, 10, 613-627. https://doi.org/10.1016/S0733-8619(18)30200-7 |
[13] | Ydens, E., et al. (2020) Profiling Peripheral Nerve Macro-phages Reveals Two Macrophage Subsets with Distinct Localization, Transcriptome and Response to Injury. Nature Neuroscience, 23, 676-689.
https://doi.org/10.1038/s41593-020-0618-6 |
[14] | Mirsky, R. and Jessen, K.R. (1999) The Neurobiology of Schwann Cells. Brain Pathology (Zurich, Switzerland), 9, 293-311. https://doi.org/10.1111/j.1750-3639.1999.tb00228.x |
[15] | Gu, X., et al. (2011) Construction of Tissue Engineered Nerve Grafts and Their Application in Peripheral Nerve Regeneration. Progress in Neurobiology, 93, 204-230. https://doi.org/10.1016/j.pneurobio.2010.11.002 |
[16] | Perkins, N.M. and Tracey, D.J. (2000) Hyperalgesia Due to Nerve Injury: Role of Neutrophils. Neuroscience, 101, 745-757. https://doi.org/10.1016/S0306-4522(00)00396-1 |
[17] | Mueller, M., et al. (2003) Macrophage Response to Periph-eral Nerve Injury: The Quantitative Contribution of Resident and Hematogenous macrOphages. Laboratory Investigation, 83, 175-185.
https://doi.org/10.1097/01.LAB.0000056993.28149.BF |
[18] | Zigmond, R.E. and Echevarria, F.D. (2019) Macro-phage Biology in the Peripheral Nervous System after Injury. Progress in Neurobiology, 173, 102-121. https://doi.org/10.1016/j.pneurobio.2018.12.001 |
[19] | 王玉江. 雪旺氏细胞与神经再生的研究进展[J]. 神经解剖学杂志, 1992, 8(2): 163-169. |
[20] | Crang, A.J. and Blakemore, W.F. (1986) Observations on Wallerian Degeneration in Explant Cultures of Cat Sciatic Nerve. Journal of Neurocytology, 15, 471-482. https://doi.org/10.1007/BF01611730 |
[21] | Jessen, K.R. and Mirsky, R. (2016) The Repair Schwann Cell and Its Function in Regenerating Nerves. The Journal of Physiology, 594, 3521-3531. https://doi.org/10.1113/JP270874 |
[22] | 金理正, 方马荣, 沈忠飞. 雪旺氏细胞在周围神经损伤修复中的作用[J]. 四川解剖学杂志, 2004, 12(2): 184-185. |
[23] | Glenn, T.D. and Talbot, W.S. (2013) Signals Regulating Myelination in Peripheral Nerves and the Schwann Cell Response to Injury. Current Opinion in Neurobiology, 23, 1041-1048. https://doi.org/10.1016/j.conb.2013.06.010 |
[24] | Lim, H., et al. (2014) Label-Free Imaging of Schwann Cell Mye-lination by Third Harmonic Generation Microscopy. Proceedings of the National Academy of Sciences of the United States of America, 111, 18025-18030.
https://doi.org/10.1073/pnas.1417820111 |
[25] | 阿德尔曼, 主编. 神经科学百科全书[M]. 《神经科学百科全书》翻译编辑委员会, 译. 伯克豪伊萨尔出版社; 上海科学技术出版社, 1992. |
[26] | Eva, R. and Fawcett, J. (2014) Integrin Signalling and Traffic During Axon Growth and Regeneration. Current Opinion in Neurobiology, 27, 179-185. https://doi.org/10.1016/j.conb.2014.03.018 |
[27] | Eva, R., et al. (2017) EFA6 Regulates Selective Polarised Transport and Axon Regeneration from the Axon Initial Segment. Journal of Cell Science, 130, 3663-3675. https://doi.org/10.1242/jcs.207423 |
[28] | Wanner, I.B. and Wood, P.M. (2002) N-Cadherin Mediates Axon-Aligned Process Growth and Cell-Cell Interaction in Rat Schwann Cells. The Journal of Neuroscience, 22, 4066-4079.
https://doi.org/10.1523/JNEUROSCI.22-10-04066.2002 |
[29] | Duraikannu, A., et al. (2019) Beyond Trophic Fac-tors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Frontiers in Cellular Neuroscience, 13, 128. https://doi.org/10.3389/fncel.2019.00128 |
[30] | Mehta, P. and Piao, X. (2017) Adhesion G-Protein Coupled Recep-tors and Extracellular Matrix Proteins: Roles in Myelination and Glial Cell Development. Developmental Dynamics, 246, 275-284. https://doi.org/10.1002/dvdy.24473 |
[31] | Chang, H.Y., et al. (2002) Diversity, Topographic Differentia-tion, and Positional Memory in Human Fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99, 12877-12882.
https://doi.org/10.1073/pnas.162488599 |
[32] | Woodhoo, A. and Sommer, L. (2008) Development of the Schwann Cell Lineage: From the Neural Crest to the Myelinated Nerve. Glia, 56, 1481-1490. https://doi.org/10.1002/glia.20723 |
[33] | Bunge, R.P., Bunge, M.B. and Cochran, M. (1978) Some Factors Influ-encing the Proliferation and Differentiation of Myelin-Forming Cells. Neurology, 28, 59-67. https://doi.org/10.1212/WNL.28.9_Part_2.59 |
[34] | 吴艳青, 肖健, 李校堃. 成纤维细胞生长因子在神经损伤修复中作用的研究进展[J]. 药学进展, 2019, 43(1): 12-18. |
[35] | Thomas, P.K. (1963) The Connective Tissue of Periph-eral Nerve: An Electron Microscope Study. Journal of Anatomy, 97, 35-44. |
[36] | Kim, H.A., Mindos, T. and Parkinson, D.B. (2013) Plastic Fantastic: Schwann Cells and Repair of the Peripheral Nervous System. Stem Cells Translational Medicine, 2, 553-557. https://doi.org/10.5966/sctm.2013-0011 |
[37] | Bonnekoh, P.G., Scheidt, P. and Friede, R.L. (1989) Myelin Phagocytosis by Peritoneal Macrophages in Organ Cultures of Mouse Peripheral Nerve. A New Model for Studying Myelin Phagocytosis in Vitro. Journal of Neuropathology and Experimental Neurology, 48, 140-153. https://doi.org/10.1097/00005072-198903000-00002 |
[38] | Kim, H.-S., et al. (2020) Directly Induced Human Schwann Cell Precursors as a Valuable Source of Schwann Cells. Stem Cell Research & Therapy, 11, Article No. 257. https://doi.org/10.1186/s13287-020-01772-x |
[39] | Conforti, L., Gilley, J. and Coleman, M.P. (2014) Wallerian De-generation: An Emerging Axon Death Pathway Linking Injury and Disease. Nature Reviews. Neuroscience, 15, 394-409. https://doi.org/10.1038/nrn3680 |
[40] | Gamage, K.K., et al. (2017) Death Receptor 6 Promotes Wallerian Degenera-tion in Peripheral Axons. Current Biology: CB, 27, 890-896. https://doi.org/10.1016/j.cub.2017.01.062 |
[41] | Chen, P., Piao, X. and Bonaldo, P. (2015) Role of Macrophages in Wallerian Degeneration and Axonal Regeneration after Pe-ripheral Nerve Injury. Acta Neuropathologica, 130, 605-618. https://doi.org/10.1007/s00401-015-1482-4 |
[42] | Pearce, J.M. (2000) Wallerian Degeneration. Journal of Neurolo-gy, Neurosurgery, and Psychiatry, 69, 791.
https://doi.org/10.1136/jnnp.69.6.791 |
[43] | Millesi, H. (1982) Microsurgery of Peripheral Nerves. Annales Chirur-giae et Gynaecologiae, 71, 56-64. |
[44] | Ebadi, M., et al. (1997) Neurotrophins and Their Receptors in Nerve Injury and Repair. Neurochemistry International, 30, 347-374. https://doi.org/10.1016/S0197-0186(96)00071-X |
[45] | Jung, M., et al. (2017) IL-10 Improves Cardiac Remodeling after Myocardial Infarction by Stimulating M2 Macrophage Polar-ization and Fibroblast Activation. Basic Research in Cardiology, 112, Article No. 33.
https://doi.org/10.1007/s00395-017-0622-5 |
[46] | Siqueira Mietto, B., et al. (2015) Role of IL-10 in Resolution of Inflammation and Functional Recovery after Peripheral Nerve Injury. The Journal of Neuroscience, 35, 16431-16442. https://doi.org/10.1523/JNEUROSCI.2119-15.2015 |
[47] | Fok-Seang, J., et al. (1998) Cytokine-Induced Changes in the Ability of Astrocytes to Support Migration of Oligodendrocyte Precursors and Axon Growth. The European Journal of Neuroscience, 10, 2400-2415.
https://doi.org/10.1046/j.1460-9568.1998.00251.x |
[48] | Leibinger, M., et al. (2021) Transneuronal Delivery of Hy-per-Interleukin-6 Enables Functional Recovery after Severe Spinal Cord Injury in Mice. Nature Communications, 12, Article No. 391. https://doi.org/10.1038/s41467-020-20112-4 |
[49] | Vidal, P.M., et al. (2013) The Role of “An-ti-Inflammatory” Cytokines in Axon Regeneration. Cytokine & Growth Factor Reviews, 24, 1-12. https://doi.org/10.1016/j.cytogfr.2012.08.008 |
[50] | Cunha, M.I., et al. (2020) Pro-Inflammatory Activation Follow-ing Demyelination Is Required for Myelin Clearance and Oligodendrogenesis. The Journal of Experimental Medicine, 217, e20191390
https://doi.org/10.1084/jem.20191390 |
[51] | Qin, Y., et al. (2008) TNF-Alpha as an Autocrine Mediator and Its Role in the Activation of Schwann Cells. Neurochemical Research, 33, 1077-1084. https://doi.org/10.1007/s11064-007-9552-1 |
[52] | 王开强, 刘俊宾, 毕好生. 大鼠外周神经损伤后局部肿瘤坏死因子α在神经病理痛发生中的作用[J]. 中华麻醉学杂志, 2002, 22(8): 477-479. |
[53] | Zhang, H., Zhang, H. and Dougherty, P.M. (2013) Dynamic Effects of TNF-α on Synaptic Transmission in Mice over Time Following Sciatic Nerve Chronic Constriction Injury. Journal of Neurophysiology, 110, 1663-1671.
https://doi.org/10.1152/jn.01088.2012 |
[54] | Brück, W. (1997) The Role of Macrophages in Wallerian Degeneration. Brain Pathology (Zurich, Switzerland), 7, 741-752. https://doi.org/10.1111/j.1750-3639.1997.tb01060.x |
[55] | Chen, P., et al. (2015) Collagen VI Regulates Peripheral Nerve Regeneration by Modulating Macrophage Recruitment and Po-larization. Acta Neuropathologica, 129, 97-113. https://doi.org/10.1007/s00401-014-1369-9 |
[56] | Jeub, M., et al. (2020) Reduced Inflammatory Response and Accelerated Functional Recovery Following Sciatic Nerve Crush Lesion in CXCR3-Deficient Mice. Neuroreport, 31, 672-677. https://doi.org/10.1097/WNR.0000000000001468 |
[57] | Lu, C.-Y., et al. (2020) Macrophage-Derived Vascular Endothelial Growth Factor-A Is Integral to Neuromuscular Junction Reinnervation after Nerve Injury. The Journal of Neuroscience, 40, 9602-9616.
https://doi.org/10.1523/JNEUROSCI.1736-20.2020 |
[58] | Gordon, T. (2009) The Role of Neurotrophic Factors in Nerve Regeneration. Neurosurgical Focus, 26, E3.
https://doi.org/10.3171/FOC.2009.26.2.E3 |
[59] | Razavi, S., et al. (2015) Neurotrophic Factors and Their Effects in the Treatment of Multiple Sclerosis. Advanced Biomedical Research, 4, 53. https://doi.org/10.4103/2277-9175.151570 |
[60] | Nockher, W.A. and Renz, H. (2003) Neurotrophins in Inflamma-tory Lung Diseases: Modulators of Cell Differentiation and Neuroimmune Interactions. Cytokine & Growth Factor Re-views, 14, 559-578.
https://doi.org/10.1016/S1359-6101(03)00071-6 |
[61] | Li, R., et al. (2020) Nerve Growth Factor Activates Autoph-agy in Schwann Cells to Enhance Myelin Debris Clearance and to Expedite Nerve Regeneration. Theranostics, 10, 1649-1677. https://doi.org/10.7150/thno.40919 |
[62] | Allen, S.J., et al. (2013) GDNF, NGF and BDNF as Thera-peutic Options for Neurodegeneration. Pharmacology & Therapeutics, 138, 155-175. https://doi.org/10.1016/j.pharmthera.2013.01.004 |
[63] | Hatzenbuehler, J. (2015) Peripheral Nerve Injury. Current Sports Medicine Reports, 14, 356-357.
https://doi.org/10.1249/JSR.0000000000000186 |
[64] | 尚宇阳, 辛畅泰, 安贵林. 自体周围神经移植的研究进展[J]. 中国实用手外科杂志, 2001, 15(1): 41-44. |
[65] | Jiang, B., Zhang, P. and Jiang, B. (2010) Advances in Small Gap Sleeve Bridging Peripheral Nerve Injury. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 38, 1-4. https://doi.org/10.3109/10731190903495652 |
[66] | Alluin, O., et al. (2009) Functional Recovery after Peripheral Nerve Injury and Implantation of a Collagen Guide. Biomaterials, 30, 363-373. https://doi.org/10.1016/j.biomaterials.2008.09.043 |
[67] | 修先伦, 等. 侧侧缝合法治疗不完全性周围神经损伤的实验研究[J]. 中国矫形外科杂志, 2001, 8(10): 984-985. |
[68] | 张文韬, 姜可, 王军虎. 周围神经损伤的显微外科修复[J]. 美中国际创伤杂志, 2009, 8(3): 44+29. |
[69] | 张伟, 侯春林. 神经移植术修复周围神经损伤[J]. 国际骨科学杂志, 2002, 23(2): 98-101. |
[70] | 袁伟东, 等. 4种自体神经移植方法修复周围神经缺损比较的实验研究[J]. 中国煤炭工业医学杂志, 2008, 11(1): 81-84. |
[71] | 王爱民, 等. 血循环因素在鼠周围神经移植修复脊髓损伤中的作用[J]. 中华神经外科杂志, 1996, 12(3): 160-163. |
[72] | 孙占胜, 邱春晖, 赵孔波. 游离神经移植修复周围神经缺损100例[J]. 山东医药, 2003, 43(27): 21-22. |
[73] | 张冰, 唐林俊. 同种异体神经移植的研究进展[J]. 四川医学, 2014(12): 1595-1597. |
[74] | 杨润功, 等. 去细胞同种异体神经移植修复周围神经缺损临床安全性研究[J]. 中华外科杂志, 2012, 50(1): 74-76. |
[75] | Sugita, N., et al. (2004) Interposed Autologous Nerve Segment Stimulates Nerve Re-generation in Peripheral Nerve Allografts in a Rat Model. Journal of Reconstructive Microsurgery, 20, 167-174.
https://doi.org/10.1055/s-2004-820774 |
[76] | 杨洁, 等. 组织工程学修复周围神经损伤的研究进展[J]. 齐齐哈尔医学院学报, 2011, 32(9): 1457-1458. |
[77] | 张文怡. 周围神经组织工程学修复的研究进展[J]. 锦州医科大学学报, 2003, 24(5): 52-54. |
[78] | 陈勇, 等. 神经导管支架修复外周神经损伤的研究与现状[J]. 中国组织工程研究, 2017, 21(30): 4901-4907. |
[79] | 周经, 杨晓楠, 祁佐良. 复合型神经导管与周围神经修复[J]. 中华整形外科杂志, 2019, 35(3): 314-318. |