全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无核的p度1-正则Cayley图
Core-Free 1-Regular Cayley Graphs of Valency p

DOI: 10.12677/AAM.2021.1010358, PP. 3407-3411

Keywords: 无核Cayley图,单群,自同构群,正规Cayley图
Core-Free Cayley Graph
, Simple Group, Automorphism Group, Normal Cayley Graph

Full-Text   Cite this paper   Add to My Lib

Abstract:

设Γ=Cay(G,S)是群G上的Cayley图。称Γ为无核(关于G)的Cayley图,如果G在X中是无核的,其中G≤X≤AutΓ。本文对无核的p度1-正则Cayley图进行分类研究,其中p是一个奇素数。
Let Γ=Cay(G,S) be a Cayley graph of group G. Then Γ is said to be core-free if G is core-free in X, where G≤X≤AutΓ. We classify the p-valent 1-regular Cayley graphs in this paper, where p is a prime.

References

[1]  Frucht, R. (1952) A One-Regular Graph of Degree Three. Canadian Journal of Mathematics, 4, 240-247.
https://doi.org/10.4153/CJM-1952-022-9
[2]  Marusic, D. (1997) A Family of One-Regular Graphs of Valency 4. European Journal of Combinatorics, 18, 59-64.
https://doi.org/10.1006/eujc.1995.0076
[3]  Malnic, A., Marusicm D. and Seifter, N. (1999) Constructing Infinite One-Regular Graphs. European Journal of Combinatorics, 20, 845-853.
https://doi.org/10.1006/eujc.1999.0338
[4]  徐尚进. 具有单群传递作用的小度数图[D]: [博士学位论文]. 北京: 北京大学, 2003.
[5]  Marusic, D. and Nedela, R. (1998) Maps and Half-Transitive Graphs of Valency 4. European Journal of Combinatorics, 19, 345-354.
https://doi.org/10.1006/eujc.1998.0187
[6]  Li, J.J. and Lu, Z.P. (2009) Cubic s-Arc-Transitive Cayley Graphs. Discrete Mathematics, 309, 6014-6025.
[7]  Li, C.H. (2003) The Finite Primtive Permutation Groups Containing an Abelian Regular Subgroup. Proceedings of the London Mathematical Society, 87, 725-747.
https://doi.org/10.1112/S0024611503014266
[8]  Liebeck, M.W., Praeger, C.E. and Saxl, J. (1987) A Classification of the Maximal Subgroups of the Finite Alternating and Symmetric Groups. Journal of Algebra, 111, 365-383.
https://doi.org/10.1016/0021-8693(87)90223-7
[9]  Wilson, R.A. (2009) The Finite Simple Groups. Springer, London.
https://doi.org/10.1007/978-1-84800-988-2
[10]  Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A. and Wilson, R.A. (1985) Atlas of Finite Groups. Oxford University Press, London/New York.
[11]  Gameron, P.J. (1999) Permutation Groups. Cambridge University Press, Cambridge.
[12]  Huppert, B. and Blackburn, N. (1982) Finite Groups III. Springer-Verlag Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-67997-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133