|
甘氨酸α-晶型定向转化为γ-晶型的影响因素研究
|
Abstract:
α-晶型甘氨酸产品性质不稳定,易结块,而γ-晶型相对稳定。本文研究了α-晶型定向转化为γ-晶型的影响因素,湿度、添加剂以及溶剂种类等。研究发现湿度越大越有利于α-晶型的转化,存在一个临界转化湿度;盐类添加剂中,+1价金属离子有利于α-晶型的转化,在一定条件下均能转化为γ-晶型,阴离子和+2价金属离子均不会促进α-晶型的转化。溶剂种类对转化的结果表明中性溶液不利于α-晶型,在一定浓度的酸性或碱性溶液下,α-晶型也能定向转化为γ-晶型。
α-form glycine is not stable and easy to agglomerate, however γ-form glycine crystal structure is relatively stable. In this paper, the factors of humidity, additives and solvent types, affecting the orientation conversion of α-crystal form to γ-crystal form are studied. Results of humidity experiments show that higher humidity contributes to the transformation from α to γ form, also existed a critical humidity for transformation. In addition, salt additives experiments show that +1 valence metal ions are advantageous to the α-crystal shape transformation, under certain conditions can be converted into γ-crystal type, yet anion and +2 valence metal ions have little influence on the transformation process. Results of solvent type on the transformation show that neutral solution has little influence on the transformation, acid or alkaline solution under certain concentration forms the α-form convert to γ-form.
[1] | 张奇, 梅雪峰. 固体药物的转晶现象[J]. 药学学报, 2015, 50(5): 521-527. |
[2] | 陈佳星, 刘文举, 郭亚军, 卫宏远. 甘氨酸多晶型的研究进展[J]. 化学与生物工程, 2014, 31(11): 1-4. |
[3] | Bauer, J.F., Saleki-Gerhardt, A., Narayanan, B.A., Chemburkar, S.R., Patel, K.M., Spiwek, H.O., Bauer, P.E. and Allen, K.A. (2014) Polymorph of a Pharmaceutical. US Patent No. 8674112 B2. |
[4] | Chemburkar, S.R., Bauer, J., Deming, K., et al. (2000) Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development. Orgprocresdev, 4, 413-417. https://doi.org/10.1021/op000023y |
[5] | Huang, J., Stringfellow, T.C. and Yu, L. (2008) Glycine Exists Mainly as Monomers, Not Dimers, in Supersaturated Aqueous Solutions: Implications for Understanding Its Crystallization and Polymorphism. Journal of the American Chemical Society, 130, 13973-13980. https://doi.org/10.1021/ja804836d |
[6] | Vioglio, P.C., Mollica, G., Juramy, M., et al. (2018) New Insights into the Crystallization and Structural Evolution of Glycine Dihydrate by in-Situ Solid-State Nmr Spectroscopy. Angewandte Chemie, 130, 6729-6733.
https://doi.org/10.1002/ange.201801114 |
[7] | Bascom, L.C. (2001) The Polymorphism of Glycine. Thermochemical and Structural Aspects. Journal of Thermal Analysis & Calorimetry, 66, 699-715. https://doi.org/10.1023/A:1013179702730 |
[8] | Wójcik, M.J. (1976) Theory of the Infrared Spectra of the Hydrogen Bond in Molecular Crystals. International Journal of Quantum Chemistry, 10, 747-760. https://doi.org/10.1002/qua.560100506 |
[9] | Iitaka, Y. (1959) Crystal Structure of Beta-Glycine. Nature, 183, 390-391. https://doi.org/10.1038/183390a0 |
[10] | Murli, C., Sharma, S.M., Karmakar, S., et al. (2003) Α-Glycine under High Pressures: A Raman Scattering Study. Physica B: Condensed Matter, 339, 23-30 |
[11] | Bull, C.L., Flowitt-Hill, G., De Gironcoli, S., et al. (2017) Zeta-Glycine: Insight into the Mechanism of a Polymorphic Phase Transition. IUCrJ, 4, 569-574. https://doi.org/10.1107/S205225251701096X |
[12] | Boldyreva, E.V., Ivashevskaya, S.N., Sowa, H., et al. (2009) Effect of Hydrostatic Pressure on the Γ-Polymorph of Glycine. 1. A Polymorphic Transition into a New Δ-Form. Zeitschrift für Kristallographie—Crystalline Materials, 220, 1-6. https://doi.org/10.1524/zkri.220.1.50.58886 |
[13] | Dawson, A., Allan, D.R., Belmonte, S.A., et al. (2005) Effect of High Pressure on the Crystal Structures of Polymorphs of Glycine. Crystal Growth & Design, 5, 1415-1427. https://doi.org/10.1021/cg049716m |
[14] | Xu, W., Zhu, Q. and Hu, C.T. (2017) The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space. Angewandte Chemie International Edition, 56, 2030-2034.
https://doi.org/10.1002/anie.201610977 |
[15] | Hughes, C.E., Hamad, S., Harris, K.D.M., et al. (2007) A Multi-Technique Approach for Probing the Evolution of Structural Properties During Crystallization of Organic Materials from Solution. Faraday Discussions, 136, 71-89.
https://doi.org/10.1039/b616611c |
[16] | Hamad, S., Hughes, C.E., Catlow, C.R.A., et al. (2008) Clustering of Glycine Molecules in Aqueous Solution Studied by Molecular Dynamics Simulation. Journal of Physical Chemistry B, 112, 7280. https://doi.org/10.1021/jp711271z |
[17] | 周甜, 钱刚, 周兴贵, 袁渭康. 超声波对甘氨酸溶析结晶过程的影响[J]. 过程工程学报, 2007, 7(4): 728-732. |
[18] | Zaccaro, J., Matic, J., Myerson, A.S., et al. (2001) Nonphotochemical, Laser-Induced Nucleation of Supersaturated Aqueous Glycine Produces Unexpected Γ-Polymorph. Crystal Growth & Design, 1, 5-8.
https://doi.org/10.1021/cg0055171 |
[19] | Wildfong, P., Morley, N.A., Moore, M., et al. (2005) Quantitative Determination of Polymorphic Composition in Intact Compacts by Parallel-Beam X-Ray Powder Diffractometry Ii. Data Correction for Analysis of Phase Transformations as a Function of Pressure. Journal of Pharmaceutical & Biomedical Analysis, 39, 1-7.
https://doi.org/10.1016/j.jpba.2005.03.003 |