全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

炎症微环境:肝肿瘤细胞和肝肿瘤干细胞中的问题
Inflammatory Microenvironment: Problems of Liver Tumor Cells and Liver Cancer Stem Cells

DOI: 10.12677/ACM.2021.1110675, PP. 4591-4603

Keywords: 炎性微环境,肝细胞癌,治疗策略,肝癌干细胞
Inflammatory Microenvironment
, Hepatocellular Carcinoma, Treatment Strategy, Hepatic Cancer Stem Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

持续的炎症会促进和加重恶性肿瘤。原发性肝癌,主要是肝细胞癌(HCC),是炎症相关癌症的一个明显例子。炎症微环境在HCC发生发展的各阶段起着不可忽视的作用,因此,在确定治疗策略时应充分考虑炎症微环境的影响。概述HCC炎症微环境的组成及该环境对肝癌细胞和肝癌肿瘤干细胞影响的关键问题,探讨其在靶向治疗和免疫治疗盛行时代中的机遇和挑战。
Persistent inflammation promotes and aggravates malignancy. Primary liver cancer, mainly hepatocellular carcinoma (HCC), is an obvious example of inflammation-related cancers. The role of the inflammatory microenvironment in the development of HCC cannot be ignored at all stages, therefore, the impact of the inflammatory microenvironment is fully considered in determining treatment strategies. This paper summarizes the composition of the inflammatory microenvironment of HCC and the key issues of the impact of this environment on HCC cells and HCC cancer stem cells, and explores its opportunities and challenges in the prevailing era of targeted therapy and immunotherapy.

References

[1]  Parkin, D.M., Pisani, P., Mu?oz, N. and Ferlay, J. (1999) The Global Health Burden of Infection. In: Newton, R., Beral, V. and Weiss, R.A., Eds., Infections and Human Cancer, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 5-33.
[2]  Yao, R.R., Li, J.H., Zhang, R., Chen, R.X. and Wang, Y.H. (2018) M2-Polarized Tumor-Associated Macrophages Facilitated Migration Epithelial-Mesenchymal Transition of HCC Cells via the TLR4/STA T3 Signaling Pathway. World Journal of Surgical Oncology, 16, 9.
https://doi.org/10.1186/s12957-018-1312-y
[3]  Edmunds, W.J., et al. (1993) The Influence of Age on the Development of the Hepatitis B Carrier State. Proceedings of the Royal Society B: Biological Sciences, 253, 197-201.
https://doi.org/10.1098/rspb.1993.0102
[4]  Castello, G., et al. (2010) HCV-Related Hepatocellular Carcinoma: From Chronic Inflammation to Cancer. Clinical Immunology, 134, 237-250.
https://doi.org/10.1016/j.clim.2009.10.007
[5]  Zheng, L., You, N., Huang, X., Gu, H., Wu, K., Mi, N. and Li, J. (2019) COMMD7 Regulates NF-kappaB Signaling Pathway in Hepatocellular Carcinoma Stem-Like Cells. Molecular Therapy—Oncolytics, 12, 112-123.
https://doi.org/10.1016/j.omto.2018.12.006
[6]  Porta, C., Riboldi, E. and Sica, A. (2011) Mechanisms Linking Pathogens-Associated Inflammation and Cancer. Cancer Letters, 305, 250-262.
https://doi.org/10.1016/j.canlet.2010.10.012
[7]  Leonardi, G.C., Candido, S., Cervello, M., et al. (2012) The Tumor Microenvironment in Hepatocellular Carcinoma. International Journal of Oncology, 40, 1733-1747.
[8]  Luedde, T. and Schwabe, R.F. (2011) NF-κB in the Liver-Linking Injury, Fibrosis and Hepatocellular Carcinoma. Nature Review Gastroenterology and Hepatology, 8, 108-118.
https://doi.org/10.1038/nrgastro.2010.213
[9]  Yang, J.D., Nakamura, I. and Roberts, L.R. (2011) The Tumor Microenvironment in Hepatocellular Carcinoma: Current Status and Therapeutic Targets. Seminars in Cancer Biology, 21, 35-43.
https://doi.org/10.1016/j.semcancer.2010.10.007
[10]  Giannitrapani, L., Cervello, M., Soresi, M., Notarbartolo, M., La Rosa, M., Virruso, L., D’Alessandro, N. and Montalto, G. (2002) Circulating IL-6 and sIL-6R in Patients with Hepatocellular Carcinoma. Annals of the New York Academy of Sciences, 963, 46-52.
https://doi.org/10.1111/j.1749-6632.2002.tb04093.x
[11]  Roberts, L.R. (2016) Biomarkers for Hepatocellular Carcinoma. Gastroenterology & Hepatology, 12, 252-255.
[12]  Kao, J.T., Feng, C.L., Yu, C.J., Tsai, S.M., Hsu, P.N., Chen, Y.L. and Wu, Y.Y. (2015) IL-6, through p-STAT3 Rather than p-STAT1, Activates Hepatocarcinogenesis and Affects the Survival of Hepatocellular Carcinoma Patients: A Cohort Study. BMC gastroenterology, 15, 50.
https://doi.org/10.1186/s12876-015-0283-5
[13]  Liu, R., Tang, C., Shen, A., et al. (2016) IL-37 Suppresses Hepatocellular Carcinoma Growth by Converting pSmad3 Signaling from JNK/pSmad3L/c-Myc Oncogenic Signaling to pSmad3C/P21 Tumor-Suppressive Signaling. Oncotarget, 7, 85079-85096.
https://doi.org/10.18632/oncotarget.13196
[14]  Lee, Y.J. and Jang, B.K. (2015) The Role of Autophagy in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 16, 26629-26643.
https://doi.org/10.3390/ijms161125984
[15]  Li, T.T., Zhu, D., Mou, T., et al. (2017) IL-37 Induces Autophagy in Hepatocellular Carcinoma Cells by Inhibiting the PI3K/AKT/mTOR Pathway. Molecular Immunology, 87, 132-140.
https://doi.org/10.1016/j.molimm.2017.04.010
[16]  Xiang, Z.L., et al. (2009) Chemokine Receptor CXCR4 Expression in Hepatocellular Carcinoma Patients Increases the Risk of Bone Metastases and Poor Survival. BMC Cancer, 9, 176.
https://doi.org/10.1186/1471-2407-9-176
[17]  Du, D., et al. (2014) The Effects of the CCR6/CCL20 Biological Axis on the Invasion and Metastasis of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 15, 6441-6452.
https://doi.org/10.3390/ijms15046441
[18]  Yeung, O.W., et al. (2015) Alternatively, Activated (M2) Macrophages Promote Tumor Growth and Hepatocellular Carcinoma Invasiveness. Journal of Hepatology, 62, 607-616.
https://doi.org/10.1016/j.jhep.2014.10.029
[19]  Leng, J., Han, C., Demetris, A.J., et al. (2003) Cyclooxygenase-2 Promotes Hepatocellular Carcinoma Cell Growth through Akt Activation: Evidence for Akt Inhibition in Celecoxib Induces Apoptosis. Hepatology, 38, 756-768.
https://doi.org/10.1053/jhep.2003.50380
[20]  Dajani, O.F., Meisdalen, K., Guren, T.K., Aasrum, M., Tveteraas, I.H., Lilleby, P., Thoresen, G.H., Sandnes, D. and Christoffersen, T. (2008) Prostaglandin E2 Upregulates EGF-Stimulated Signaling in Mitogenic Pathways Involving Akt and ERK in Hepatocytes. Journal of Cellular Physiology, 214, 371-380.
https://doi.org/10.1002/jcp.21205
[21]  Hatziapostolou, M., Polytarchou, C., Aggelidou, E., Drakaki, A., Poultsides, G.A., Jaeger, S.A., Ogata, H., Karin, M., Struhl, K., Hadzopoulou-Cladaras, M. and Iliopoulos, D. (2011) An HNF4α-miRNA an Inflammatory Feedback Circuit Regulates Hepatocellular Oncogenesis. Cell, 147, 1233-1247.
https://doi.org/10.1016/j.cell.2011.10.043
[22]  Bonavita, E., Gentile, S., Rubino, M., Maina, V., Papait, R., Kunderfranco, P., et al. (2015) PTX3 Is an Extrinsic Oncosuppressor Regulating Complement-Dependent Inflammation in Cancer. Cell, 160, 700-714.
https://doi.org/10.1016/j.cell.2015.01.004
[23]  Rava, M., D’Andrea, A., Doni, M., Kress, T.R., Ostuni, R., Bianchi, V., et al. (2017) Mutual Epithelium-Macrophage Dependency in Liver Carcinogenesis Mediated by ST18. Hepatology (Baltimore, Md), 65, 1708-1719.
https://doi.org/10.1002/hep.28942
[24]  Wang, D., Yang, L., Yue, D., Cao, L., Li, L., Wang, D., et al. (2019) Macrophage-Derived CCL22 Promotes an Immunosuppressive Tumor Microenvironment via IL-8 in Malignant Pleural Effusion. Cancer Letters, 452, 244-253.
https://doi.org/10.1016/j.canlet.2019.03.040
[25]  Yin, C., Evason, K.J., Asahina, K. and Stainier, D.Y.R. (2013) Hepatic Stellate Cells in Liver Development, Regeneration, and Cancer. Journal of Clinical Investigation, 123, 1902-1910.
https://doi.org/10.1172/JCI66369
[26]  Chen, Y., Choi, S.S., Michelotti, G.A., Chan, I.S., Swiderska-Syn, M., Karaca, G.F., et al. (2012) Hedgehog Controls Hepatic Stellate Cell Fate by Regulating Metabolism. Gastroenterology, 143, 1319-1329.
https://doi.org/10.1053/j.gastro.2012.07.115
[27]  Maeda, S., Kamata, H., Luo, J.L., Leffert, H. and Karin, M. (2005) IKKβ Couples Hepatocyte Death to Cytokine-Driven Compensatory Proliferation That Promotes Chemical Hepatocarcinogenesis. Cell, 121, 977-990.
https://doi.org/10.1016/j.cell.2005.04.014
[28]  Maed, S., Hikiba, Y., Sakamoto, K., Nakagawa, H., Hirata, Y., Hayakawa, Y., Yanai, A., Ogura, K., Karin, M. and Omata, M. (2009) I Kappa B Kinase Beta/Nuclear Factor-kappaB Activation Controls the Development of Liver Metastasis by Way of Interleukin-6 Expression. Hepatology, 50, 1851-1860.
https://doi.org/10.1002/hep.23199
[29]  Taub, R. (2003) Hepatoprotection via the IL-6/Stat3 Pathway. Journal of Clinical Investigation, 112, 978-980.
https://doi.org/10.1172/JCI19974
[30]  Van Hees, S., Michielsen, P. and Vanwolleghem, T. (2016) Circulating Predictive and Diagnostic Biomarkers for Hepatitis B Virus-Associated Hepatocellular Carcinoma. World Journal of Gastroenterology, 22, 8271.
https://doi.org/10.3748/wjg.v22.i37.8271
[31]  Kao, J.-T., Feng, C.-L., Yu, C.-J., Tsai, S.-M., Hsu, P.-N., Chen, Y.-L. and Wu, Y.-Y. (2015) IL-6, through p-STAT3 Rather than p-STAT1, Activates Hepatocarcinogenesis and Affects the Survival of Hepatocellular Carcinoma Patients: A Cohort Study. BMC Gastroenterology, 15, 50.
https://doi.org/10.1186/s12876-015-0283-5
[32]  He, G., Yu, G.-Y., Temkin, V., Ogata, H., Kuntzen, C., Sakurai, T., Sieghart, W., Peck-Radosavljevic, M., Leffert, H.L. and Karin, M. (2010) Hepatocyte IKKβ/NF-κB Inhibits Tumor Promotion and Progression by Preventing Oxidative Stress-Driven STAT3 Activation. Cancer Cell, 17, 286-297.
https://doi.org/10.1016/j.ccr.2009.12.048
[33]  Rebouissou, S., Amessou, M., Couchy, G., Poussin, K., Imbeaud, S., Pilati, C., Izard, T., Balabaud, C., Bioulac-Sage, P. and Zucman-Rossi, J. (2009) Frequent In-Frame Somatic Deletions Activate gp130 in Inflammatory Hepatocellular Tumors. Nature, 457, 200.
https://doi.org/10.1038/nature07475
[34]  Kusaba, M., Nakao, K., Goto, T., Nishimura, D., Kawashima, H., Shibata, H., Motoyoshi, Y., Taura, N., Ichikawa, T. and Hamasaki, K. (2007) Abrogation of Constitutive STAT3 Activity Sensitizes Human Hepatoma Cells to TRAIL-Mediated Apoptosis. Journal of Hepatology, 47, 546-555.
https://doi.org/10.1016/j.jhep.2007.04.017
[35]  Jiang, R., Tan, Z., Deng, L., Chen, Y., Xia, Y., Gao, Y., Wang, X. and Sun, B. (2011) Interleukin-22 Promotes Human Hepatocellular Carcinoma by Activation of STAT3. Hepatology, 54, 900-909.
https://doi.org/10.1002/hep.24486
[36]  Mercer, T.R., Dinger, M.E. and Mattick, J.S. (2009) Long Non-Coding RNAs: Insights into Functions. Nature Reviews Genetics, 10, 155.
https://doi.org/10.1038/nrg2521
[37]  Cheng, C.J., Bahal, R., Babar, I.A., Pincus, Z., Barrera, F., Liu, C., et al. (2015) MicroRNA Silencing for Cancer Therapy Is Targeted to the Tumor Microenvironment. Nature, 518, 107-110.
https://doi.org/10.1038/nature13905
[38]  Zhou, D., Huang, C., Lin, Z., et al. (2014) Macrophage Polarization and Function Emphasize the Evolving Roles of Coordinated Regulation of Cellular Signaling Pathways. Cell Signal, 26, 192-197.
https://doi.org/10.1016/j.cellsig.2013.11.004
[39]  Zhang, N., Duan, W.D., Leng, J.J., Zhou, L., Wang, X., Xu, Y.Z., Wang, X.D., Zhang, A.Q. and Dong, J.H. (2015) STAT3 Regulates the Migration and Invasion of a Stem-Like Subpopulation through microRNA-21 and Multiple Targets in Hepatocellular Carcinoma. Oncology Reports, 33, 1493-1498.
https://doi.org/10.3892/or.2015.3710
[40]  Wang, B., Majumder, S., Nuovo, G., Kutay, H., Olivia, S., Patel, T., Schmittgen, T.D., Croce, C., Ghoshal, K. and Jacob, S.T. (2009) Role of microRNA-155 at Early Stages of Hepatocarcinogenesis Induced by Choline-Deficient and Amino Acid-Defined Diet in C57BL/6 Mice. Hepatology, 50, 1152-1161.
https://doi.org/10.1002/hep.23100
[41]  Li, X.Q., Ren, Z.X., Li, K., Huang, J.J., Huang, Z.T., Zhou, T.R., Cao, H.Y., Zhang, F.X. and Tan, B. (2018) Key Anti-Fibrosis Associated Long Noncoding RNAs Identified in Human Hepatic Stellate Cell via Transcriptome Sequencing Analysis. International Journal of Molecular Sciences, 19, 675.
https://doi.org/10.3390/ijms19030675
[42]  Ye, Y., Xu, Y., Lai, Y., et al. (2018) Long Noncoding RNA Cox-2 Prevents Immune Evasion and Metastasis of Hepatocellular Carcinoma by Altering M1/M2 Macrophage Polarization. Journal of Cellular Biochemistry, 119, 2951-2963.
https://doi.org/10.1002/jcb.26509
[43]  Marquardt, J.U. (2018) The Role of Transforming Growth Factor-beta in Human Hepatocarcinogenesis: Mechanistic and Therapeutic Implications from an Integrative Multiomics Approach. Gastroenterology, 154, 17-20.
https://doi.org/10.1053/j.gastro.2017.11.015
[44]  Merdrignac, A., Angenard, G., Allain, C., Petitjean, K., Berget, D., Bellaud, P., Fautrel, A., Turlin, B., Clement, B., Dooley, S., et al. (2018) A Novel Transforming Growth Factor Beta-Induced Long Noncoding RNA Promotes an Inflammatory Microenvironment in Human Intrahepatic Cholangiocarcinoma. Hepatology Communications, 2, 254-269.
https://doi.org/10.1002/hep4.1142
[45]  Yuan, J.H., Yang, F., Wang, F., Ma, J.Z., Guo, Y.J., Tao, Q.F., Liu, F., Pan, W., Wang, T.T., Zhou, C.C., et al. (2014) A Long Noncoding RNA Activated by TGF-beta Promotes the Invasion-Metastasis Cascade in Hepatocellular Carcinoma. Cancer Cell, 25, 666-681.
https://doi.org/10.1016/j.ccr.2014.03.010
[46]  Almajhdi, F.N., Al-Quadri, A.Y. and Hussain, Z. (2013) Differential Expression of Transforming Growth Factor-beta1 and HBx Enhances Hepatitis B Virus Replication and Augments Host Immune Cytokines and Chemokines. Annals of Hepatology, 12, 408-415.
https://doi.org/10.1016/S1665-2681(19)31003-8
[47]  Xiang, W.Q., Feng, W.F., Ke, W., Sun, Z., Chen, Z. and Liu, W. (2011) Hepatitis B Virus X Protein Stimulates IL-6 Expression in Hepatocytes via a MyD88-Dependent Pathway. Journal of Hepatology, 54, 26-33.
https://doi.org/10.1016/j.jhep.2010.08.006
[48]  Sheng, T., Wang, B., Deng, B., Qu, L., Qi, X.S., Wang, X.L., Deng, G.L. and Sun, X. (2015) The Relationship between Serum Interleukin-6 and the Recurrence of Hepatitis b Virus-Related Hepatocellular Carcinoma after Curative Resection. Medicine (Baltimore), 94, e941.
https://doi.org/10.1097/MD.0000000000000941
[49]  Xia, L., Tian, D., Huang, W., Zhu, H., Wang, J., Zhang, Y., Hu, H., Nie, Y., Fan, D. and Wu, K. (2012) Upregulation of IL-23 Expression in Patients with Chronic Hepatitis B Is Mediated by the HBx/ERK/NF-kB Pathway. The Journal of Immunology, 188, 753-764.
https://doi.org/10.4049/jimmunol.1101652
[50]  Wang, D., Zou, L., Liu, X., Zhu, H. and Zhu, R. (2016) Chemokine Expression Profiles of Human Hepatoma Cell Lines Mediated by Hepatitis b Virus x Protein. Pathology and Oncology Research, 22, 393-399.
https://doi.org/10.1007/s12253-015-0014-9
[51]  Tangkijvanich, P., Thong-Ngam, D., Mahachai, V., Theamboonlers, A. and Poovorawan, Y. (2007) Role of Serum Interleukin-18 as a Prognostic Factor in Patients with Hepatocellular Carcinoma. World Journal of Gastroenterology, 13, 4345-4349.
https://doi.org/10.3748/wjg.v13.i32.4345
[52]  Liu, K.G., Shao, X.L., Xie, H.H., Xu, L., Zhao, H., Guo, Z.H., Li, L. and Liu, J. (2010) The Expression of Hepatitis B Virus X Protein and Cyclooxygenase-2 in Hepatitis B Virus-Related Hepatocellular Carcinoma: Correlation with Microangiogenesis and Metastasis, and What Is the Possible Mechanism. Chinese Journal of Hepatology, 18, 831-836.
[53]  Zheng, B.Y., Fang, X.F., Zou, L.Y., Huang, Y.H., Chen, Z.X., Li, D., Zhou, L.Y., Chen, H. and Wang, X.Z. (2014) The Co-Localization of HBx and COXIII Upregulates COX-2 Promoting HepG2 Cell Growth. International Journal of Oncology, 45, 1143-1150.
https://doi.org/10.3892/ijo.2014.2499
[54]  Yang, Z.F. and Poon, R.T. (2008) Vascular Changes in Hepatocellular Carcinoma. The Anatomical Record (Hoboken), 291, 721-734.
https://doi.org/10.1002/ar.20668
[55]  Yu, D., Sun, X., Qiu, Y., et al. (2007) Identification and Clinical Significance of Mobilized Endothelial Progenitor Cells in Tumor Vasculogenesis of Hepatocellular Carcinoma. Clinical Cancer Research, 13, 3814-3824.
https://doi.org/10.1158/1078-0432.CCR-06-2594
[56]  Itano, N., Zhuo, L. and Kimata, K. (2008) Impact of the Hyaluronan-Rich Tumor Microenvironment on Cancer Initiation and Progression. Cancer Science, 99, 1720-1725.
https://doi.org/10.1111/j.1349-7006.2008.00885.x
[57]  Lewis, C.E. and Pollard, J.W. (2006) Distinct Role of Macrophages in Different Tumor Microenvironments. Cancer Research, 66, 605-612.
https://doi.org/10.1158/0008-5472.CAN-05-4005
[58]  Song, G., Ohashi, T., Sakamoto, N. and Sato, M. (2006) Adhesive Force of Human Hepatoma HepG2 Cells to Endothelial Cells and Expression of E-Selectin. Molecular and Cellular Biomechanics, 3, 61-68.
[59]  Liu, L., Zhu, X.D., Wang, W.Q., et al. (2010) Activation of Beta-Catenin by Hypoxia in Hepatocellular Carcinoma Contributes to Enhanced Metastatic Potential and Poor Prognosis. Clinical Cancer Research, 16, 2740-2750.
https://doi.org/10.1158/1078-0432.CCR-09-2610
[60]  Polyak, K. and Weinberg, R.A. (2009) Transitions between Epithelial and Mesenchymal States: Acquisition of Malignant and Stem Cell Traits. Nature Reviews Cancer, 9, 265-273.
https://doi.org/10.1038/nrc2620
[61]  Ren, T., Zhu, L. and Cheng, M. (2017) CXCL10 Accelerates EMT and Metastasis by MMP-2 in Hepatocellular Carcinoma. American Journal of Translational Research, 9, 2824-2837.
[62]  Cui, X., Li, Z., Gao, J., Gao, P.J., Ni, Y.B. and Zhu, J.Y. (2016) Elevated CXCL1 Increases Hepatocellular Carcinoma Aggressiveness and Is Inhibited by miRNA-200a. Oncotarget, 7, 65052-65066.
https://doi.org/10.18632/oncotarget.11350
[63]  Lin, H., Yang, B. and Teng, M. (2017) T-Cell Immunoglobulin Mucin-3 as a Potential Inducer of the Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Oncology Letters, 14, 5899-5905.
https://doi.org/10.3892/ol.2017.6961
[64]  Liu, Y., Liu, Y., Yan, X., Xu, Y., Luo, F., Ye, J., Yan, H., Yang, X., Huang, X., Zhang, J., et al. (2014) HIFs Enhance the Migratory and Neoplastic Capacities of Hepatocellular Carcinoma Cells by Promoting EMT. Tumor Biology, 35, 8103-8114.
https://doi.org/10.1007/s13277-014-2056-0
[65]  Wang, Z., Luo, L., Cheng, Y., et al. (2018) Correlation between Postoperative Early Recurrence of Hepatocellular Carcinoma and Mesenchymal Circulating Tumor Cells in Peripheral Blood. Journal of Gastrointestinal Surgery, 22, 633-639.
https://doi.org/10.1007/s11605-017-3619-3
[66]  Castven, D., Czauderna, C. and Marquardt, J.U. (2017) Contribution of the Cancer Stem Cell Phenotype to Hepatocellular Carcinoma Resistance. In: Villanueva, A., Ed., Resistance to Molecular Therapies for Hepatocellular Carcinoma, Springer International Publishing, Cham, Volume 13, 65-91.
https://doi.org/10.1007/978-3-319-56197-4_4
[67]  Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C. and McDade, H. (1996) Viral Dynamics in Hepatitis B Virus Infection. Proceedings of the National Academy of Sciences of the United States of America, 93, 4398.
https://doi.org/10.1073/pnas.93.9.4398
[68]  Junttila, M.R. and de Sauvage, F.J. (2013) Influence of Tumor Micro-Environment Heterogeneity on Therapeutic Response. Nature, 501, 346-354.
https://doi.org/10.1038/nature12626
[69]  Iliopoulos, D., Hirsch, H.A., Wang, G. and Struhl, K. (2011) Inducible Formation of Breast Cancer Stem Cells and Their Dynamic Equilibrium with Non-Stem Cancer Cells via IL6 Secretion. Proceedings of the National Academy of Sciences of the United States of America, 108, 1397.
https://doi.org/10.1073/pnas.1018898108
[70]  Tsuda, A., Chow, A., Wu, J., Somlo, G., Chu, P., Loera, S., Luu, T., Li, A.X., Wu, X., Ye, W., et al. (2012) CCL2 Mediates Crosstalk between Cancer Cells and Stromal Fibroblasts That Regulates Breast Cancer Stem Cells. Cancer Research, 72, 2768.
https://doi.org/10.1158/0008-5472.CAN-11-3567
[71]  Todaro, M., Gaggianesi, M., Catalano, V., Benfante, A., Iovino, F., Biffoni, M., Apuzzo, T., Sperduti, I., Volpe, S., Cocorullo, G., et al. (2014) CD44v6 Is a Marker of Constitutive and Reprogrammed Cancer Stem Cells Driving Colon Cancer Metastasis. Cell Stem Cell, 14, 342-356.
https://doi.org/10.1016/j.stem.2014.01.009
[72]  Cui, Y., Sun, S., Ren, K., Quan, M., Song, Z., Zou, H., Li, D. and Cao, J. (2016) Reversal of Liver Cancer-Associated Stellate Cell-Induced Stem-Like Characteristics in SMMC-7721 Cells by 8-Bromo-7-methoxy Chrysin via Inhibiting STAT3 Activation. Oncology Reports, 35, 2952-2962.
https://doi.org/10.3892/or.2016.4637
[73]  Chen, A., Xu, C., Luo, Y., Liu, L., Song, K., Deng, G., Yang, M., Cao, J., Yuan, L. and Li, X. (2019) Disruption of Crosstalk between LX-2 and Liver Cancer Stem-Like Cells from MHCC97H Cells by DFOG via Inhibiting FOXM1. Acta Biochimica et Biophysica Sinica, 51, 1267-1275.
https://doi.org/10.1093/abbs/gmz129
[74]  Sica, A., Porta, C., Amadori, A. and Pastò, A. (2017) Tumor-Associated Myeloid Cells as Guiding Forces of Cancer Cell Stemness. Cancer Immunology, Immunotherapy, 66, 1025-1036.
https://doi.org/10.1007/s00262-017-1997-8
[75]  Otvos, B., Silver, D.J., Mulkearns-Hubert, E.E., Alvarado, A.G., Turaga, S.M., Sorensen, M.D., Rayman, P., Flavahan, W.A., Hale, J.S., Stoltz, K., et al. (2016) Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid-Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. Stem Cells, 34, 2026-2039.
https://doi.org/10.1002/stem.2393
[76]  Chang, T.-S., Chen, C.-L., Wu, Y.-C., Liu, J.-J., Kuo, Y.C., Lee, K.-F., Lin, S.-Y., Lin, S.-E., Tung, S.-Y., Kuo, L.-M., et al. (2016) Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE, 11, e0149897.
https://doi.org/10.1371/journal.pone.0149897
[77]  Ng, K.-Y., Chai, S., Tong, M., Guan, X.-Y., Lin, C.-H., Ching, Y.-P., Xie, D., Cheng, A.S.-L. and Ma, S. (2016) C-Terminal Truncated Hepatitis B Virus X Protein Promotes Hepatocellular Carcinogenesis through Induction of Cancer and Stem Cell-Like Properties. Oncotarget, 7, 24005-24017.
https://doi.org/10.18632/oncotarget.8209
[78]  Liu, Z., Dai, X., Wang, T., Zhang, C., Zhang, W., Zhang, W., Zhang, Q., Wu, K., Liu, F., Liu, Y., et al. (2017) Hepatitis B Virus PreS1 Facilitates Hepatocellular Carcinoma Development by Promoting Appearance and Self-Renewal of Liver Cancer Stem Cells. Cancer Letters, 400, 149-160.
https://doi.org/10.1016/j.canlet.2017.04.017
[79]  Shirasaki, T., Honda, M., Yamashita, T., Nio, K., Shimakami, T., Shimizu, R., Nakasyo, S., Murai, K., Shirasaki, N., Okada, H., et al. (2018) The Osteopontin-CD44 Axis in Hepatic Cancer Stem Cells Regulates IFN Signaling and HCV Replication. Scientific Reports, 8, Article No. 13143.
https://doi.org/10.1038/s41598-018-31421-6
[80]  Liu, H., Zhang, W., Jia, Y., Yu, Q., Grau, G.E., Peng, L., Ran, Y., Yang, Z., Deng, H. and Lou, J. (2013) Single-Cell Clones of Liver Cancer Stem Cells Have the Potential of Differentiating into Different Types of Tumor Cells. Cell Death & Disease, 4, e857.
https://doi.org/10.1038/cddis.2013.340
[81]  Sukowati, C.H., Anfuso, B., Croce, L.S. and Tiribelli, C. (2015) The Role of Multipotent Cancer-Associated Fibroblasts in Hepatocarcinogenesis. BMC Cancer, 15, 188.
https://doi.org/10.1186/s12885-015-1196-y
[82]  Wan, S., Zhao, E., Kryczek, I., Vatan, L., Sadovskaya, A., Ludema, G., Simeone, D.M., Zou, W. and Welling, T.H. (2014) Tumor-Associated Macrophages Produce Interleukin Six and Signal via STAT3 to Promote the Expansion of Human Hepatocellular Carcinoma Stem Cells. Gastroenterology, 147, 1393-1404.
https://doi.org/10.1053/j.gastro.2014.08.039
[83]  Marquardt, J.U., Gomez-Quiroz, L., Arreguin Camacho, L.O., Pinna, F., Lee, Y.H., Kitade, M., Dominguez, M.P., Castven, D., Breuhahn, K., Conner, E.A., et al. (2015) Curcumin Effectively Inhibits Oncogenic NF-kappaB Signaling and Restrains Stemness Features in Liver Cancer. Journal of Hepatology, 63, 661-669.
https://doi.org/10.1016/j.jhep.2015.04.018
[84]  You, N., Zheng, L., Liu, W., Zhong, X., Wang, W. and Li, J. (2014) Proliferation Inhibition and Differentiation Induction of Hepatic Cancer Stem Cells by Knockdown of BC047440: A Potential Therapeutic Target of Stem Cell Treatment for Hepatocellular Carcinoma. Oncology Reports, 31, 1911-1920.
https://doi.org/10.3892/or.2014.3043

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133