|
虫草素免疫调节功能及分子机制研究进展
|
Abstract:
虫草素(Cordycepin)为虫草所特有的一种生物活性物质。虫草素具有多种生理药理作用,如免疫调节、抗病毒、抗氧化、降血脂、抗炎、抗癌、抗菌和降血糖等。本文综述了虫草素对机体固有免疫、适应性免疫调节及分子机制的研究进展。
Cordycepin is a unique bioactive substance of the genus Cordyceps. Cordycepin exhibits a variety of physiological and pharmacological effects including immunomodulatory, antiviral, antioxidant, hypolipidemic, anti-inflammatory, anti-cancer, antibacterial and hypoglycemic, and so on. This review describes the research advances in innate immunity, adaptive immunity and the molecular mechanism of cordycepin.
[1] | Hawley, S.A., Ross, F.A., Russell, F.M., et al. (2020) Mechanism of Activation of AMPK by Cordycepin. Cell Chemical Biology, 27, 214-222. https://doi.org/10.1016/j.chembiol.2020.01.004 |
[2] | Cunningham, K.G., Manson, W., Spring, F.S., et al. (1950) Cordycepin, a Metabolic Product Isolated from Cultures of Cordyceps militaris (Linn.) Link. Nature, 166, 949. https://doi.org/10.1038/166949a0 |
[3] | Bentley, H.R., Cunningham, K.G., and Spring, F.S. (1951) Cordycepin, a Metabolic Product from Cultures of Cordyceps militaris (Linn.) Link. Part II. The Structure of Cordycepin. Journal of the Chemical Society, 509, 2301-2305.
https://doi.org/10.1039/jr9510002301 |
[4] | Tuli, H.S., Sharma, A.K., Sandhu, S.S., et al. (2013) Cordycepin: A Bioactive Metabolite with Therapeutic Potential. Life Sciences, 93, 863-869. https://doi.org/10.1016/j.lfs.2013.09.030 |
[5] | Ashraf, S.A., Elkhalifa, A., Siddiqui, A., et al. (2020) Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential. Molecules, 25, Article No. 2735. https://doi.org/10.3390/molecules25122735 |
[6] | 龚非力. 医学免疫学[M]. 北京: 科学出版社, 2000: 177-178. |
[7] | Zhou, X.X., Meyer, C.U., Schmidtke, P., et al. (2002) Effect of Cordycepin on Interleukin-10 Production of Human Peripheml Blood Monuclear Cell. European Journal of Pharmacology, 453, 309-317.
https://doi.org/10.1016/S0014-2999(02)02359-2 |
[8] | Zhou, X.X., Luo, P.L., Dressel, W., et al. (2008) Cordycepin Is an Immunoregulatory Active Ingredient of Cordyceps sinensis. The American Journal of Chinese Medicine, 36, 967-980. https://doi.org/10.1142/S0192415X08006387 |
[9] | Daemen, T., Regts, J., Morselt, H., et al. (1992) The Effect of Liver Macrophages on in Vitro Cytolytic Activity of 5FU and FUdR on Colon Carcinoma Cells: Evidence of Macrophage Activation. International Journal of Immunopharmacology, 14, 857-864. https://doi.org/10.1016/0192-0561(92)90084-X |
[10] | Biswas, S.K. and Mantovani, A. (2010) Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nature Immunology, 11, 889-896. https://doi.org/10.1038/ni.1937 |
[11] | Kim, H.G., Shrestha, B., Lim, S.Y., et al. (2006) Cordycepin Inhibits Lipopolysaccharide-Induced Inflammation by the Suppression of NF-kappaB through Akt and p38 Inhibition in RAW 264.7 Macrophage Cells. European Journal of Pharmacology, 545, 192-199. https://doi.org/10.1016/j.ejphar.2006.06.047 |
[12] | Shin, S., Lee, S., Kwon, J., et al. (2009) Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-Induced Inflammation in Macrophages. Immune Network, 9, 98-105.
https://doi.org/10.4110/in.2009.9.3.98 |
[13] | Shin, S., Moon, S., Park, Y., et al. (2009) Role of Cordycepin and Adenosine on the Phenotypic Switch of Macrophages via Induced Anti-Inflammatory Cytokines. Immune Network, 9, 255-264.
https://doi.org/10.4110/in.2009.9.6.255 |
[14] | 李旎, 刘玮, 赵兰华, 等. 虫草素诱导巨噬细胞表达血红素氧合酶-1负向调控细胞因子分泌[J]. 实用医学杂志, 2017, 33(8): 64-68. |
[15] | Park, Y., Choi, S., Kim, B., et al. (2021) Effects of Cordyceps militaris Extracts on Macrophage as Immune Conductors. Applied Sciences, 11, Article No. 2206. https://doi.org/10.3390/app11052206 |
[16] | Sacks, D., Sacks, D., Baxter, B., et al. (2018) Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. International Journal of Stroke, 13, 612-632. |
[17] | Jeong, J.W., Jin, C.Y., Kim, G.Y., et al. (2010) Anti-Inflammatory Effects of Cordycepin via Suppression of Inflammatory Mediators in BV2 Microglial Cells. International Immunopharmacology, 10, 1580-1586.
https://doi.org/10.1016/j.intimp.2010.09.011 |
[18] | De Jong, E.L., Smith, H.H., Van, C.T., et al. (2004) Cordycepin or Cholera Toxin B Prime for Mature Dentritic Cells That Drive Development of Regulatory T Cells. 8th International Symposium on Dentritic Cells, Brugge, 17-21 October 2004, 17-21. |
[19] | 丁晨光, 田普训, 薛武军, 等. 虫草素在体外抑制T淋巴细胞增殖和向Th17分化[C]//2012中国器官移植大会论文集. 厦门: 中华医学会, 2012: 383-384. |
[20] | Jeong, M.H., Seo, M.J., Park, J.U., et al. (2012) Effect of Cordycepin Purified from Cordyceps militaris on Thl and Th2 Cytokines in Mouse Splenocytes. Journal of Microbiology and Biotechnology, 22, 1161-1164.
https://doi.org/10.4014/jmb.1203.03039 |
[21] | Xiong, Y., Zhang, S., Xu, L., et al. (2013) Suppression of T-Cell Activation in Vitro and in Vivo by Cordycepin from Cordyceps militaris. The Journal Of Surgical Research, 185, 912-922. https://doi.org/10.1016/j.jss.2013.06.057 |
[22] | Seo, M.J., Kim, M.J., Lee, H.H., et al. (2013) Effect of Cordycepin on the Expression of the Inflammatory Cytokines TNF-alpha, IL-6, and IL-17A in C57BL/6 Mice. Journal of Microbiology and Biotechnology, 23, 156-160.
https://doi.org/10.4014/jmb.1211.11032 |
[23] | 张玉环, 陈宏, 王福军. 虫草素对小鼠脾淋巴细胞调节作用的研究[C]//第四届中国中西医结合变态反应学术会议论文汇编. 西安: 中国中西医结合学会, 2009: 133-137. |
[24] | 熊瑛, 邓旭明. 虫草素对小鼠T细胞免疫活性的体内外研究[C]//中国畜牧兽医学会兽医药理毒理学分会第十二次学术讨论会. 郑州: 中国畜牧兽医学会, 2013: 128. |
[25] | Yang, X.F., Li, Y.X., He, Y.H., et al. (2015) Cordycepin Alleviates Airway Hyperreactivity in a Murine Model of Asthma by Attenuating the Inflammatory Process. International Immunopharmacology, 26, 401-408.
https://doi.org/10.1016/j.intimp.2015.04.017 |
[26] | Fei, X., Zhang, G.-Q., et al. (2017) Cordycepin Inhibits Airway Remodeling in a Rat Model of Chronic Asthma. Biomedicine & Pharmacotherapy, 88, 335-341. https://doi.org/10.1016/j.biopha.2017.01.025 |
[27] | 胡琳, 徐林, 冒灵, 等. MicroRNA-7基因敲减对小鼠胸腺T细胞发育的影响[C]//第十三届全国免疫学学术大会摘要汇编. 上海: 中国免疫学会, 2018: 100(1175635). |
[28] | Gao, H.Y., Li, G.Y., Huang, J., et al. (2013) Protective Effects of Zhuyeqing Liquor on the Immune Function of Normal and Immunosuppressed Mice in Vivo. BMC Complementary and Alternative Medicine, 13, 252.
https://doi.org/10.1186/1472-6882-13-252 |
[29] | Tao, G., Wang, C.F., Yuan, J.R., et al. (2015) Inhibition of Tumor Growth and Immunomodulatory Effects of Flavonoids and Scutebarbatines of Scutellaria barbata D. Don in Lewis-Bearing C57BL/6 Mice. Evidence-Based Complementray and Alternative Medicine, 2015, Article ID: 630760. https://doi.org/10.1155/2015/630760 |
[30] | Yong, W., Si, L., Li, X., et al. (2015) Ginkgo Biloba Extract Enhances the Immune Function of Spleen and Thymus in SD Rats. Chinese Journal of Cellular & Molecular Immunology, 31, 792-795. |
[31] | Wang, X.L., Xi, D.S., Mo, J., et al. (2020) Cordycepin Exhibits a Suppressive Effect on T Cells through Inhibiting TCR Signaling Cascade in CFA-Induced Inflammation Mice Model. Immunopharmacology and Immunotoxicology, 42, 119-127. https://doi.org/10.1080/08923973.2020.1728310 |
[32] | Artyomov, M.N., Lis, M., Devadas, S., et al. (2010) CD4 and CD8 Binding to MHC Molecules Primarily Acts to Enhance Lck Delivery. PNAS (Proceedings of the National Academy of Sciences of the United States of America), 107, 16916-16921. https://doi.org/10.1073/pnas.1010568107 |
[33] | Famili, F., Wiekmeijer, A.S. and Staal, F.J. (2017) The Development of T Cells from Stem Cells in Mice and Humans. Future Science OA, 3, FSO186. https://doi.org/10.4155/fsoa-2016-0095 |
[34] | Brownlie, R.J. and Zamoyska, R. (2013) T Cell Receptor Signalling Networks: Branched, Diversified and Bounded. Nature Reviews Immunology, 13, 257-269. https://doi.org/10.1038/nri3403 |
[35] | Rao, A., Luo, C. and Hogan, P.G. (1997) Transcription Factors of the NFAT Family: Regulation and Function. Annual Review of Immunology, 15, Article No. 707. https://doi.org/10.1146/annurev.immunol.15.1.707 |
[36] | Iniguez, M.A., Martinez, S., Punzon, C., et al. (2000) An Essential Role of the Nuclear Factor of Activated T Cells in the Regulation of the Expression of the Cyclooxygenase-2 Gene in Human T Lymphocytes. The Journal of Biological Chemistry, 275, 23627-23635. https://doi.org/10.1074/jbc.M001381200 |
[37] | Acuto, O., Di Bartolo, V. and Michel, F. (2008) Tailoring T-Cell Receptor Signals by Proximal Negative Feedback Mechanisms. Nature Reviews Immunology, 8, 699-712. https://doi.org/10.1038/nri2397 |
[38] | Peng, S.L., Gerth, A.J., Ranger, A.M., et al. (2001) NFATc1 and NFATc2 Together Control Both T and B Cell Activation and Differentiation. Immunity, 14, 13-20. https://doi.org/10.1016/S1074-7613(01)00085-1 |
[39] | Shaw, J.P., Utz, P.J., Durand, D.B., et al. (2010) Identification of a Putative Regulator of Early T Cell Activation Genes. Science, 241, 202-205. https://doi.org/10.1126/science.3260404 |
[40] | Gregorio, R.D., Iniguez, M.A., Fresno, M., et al. (2001) Cot Kinase Induces Cyclooxygenase-2 Expression in T Cells through Activation of the Nuclear Factor of Activated T Cells. Journal of Biological Chemistry, 276, 27003-27009.
https://doi.org/10.1074/jbc.M100885200 |
[41] | Macian, F., Lopez-Rodriguez, C. and Rao, A. (2001) Partners in Transcription: NFAT and AP-1. Oncogene, 20, 2476-2489. https://doi.org/10.1038/sj.onc.1204386 |
[42] | Alexey, K., Armin, N., Carola, S., et al. (1999) MAPKAP Kinase 2 Is Essential for LPS-Induced TNF-α Biosynthesis. Nature Cell Biology, 1, 94-97. https://doi.org/10.1038/10061 |
[43] | Rincon, M., Whitmarsh, A., Yang, D., et al. (1998) The JNK Pathway Regulates the in Vivo Deletion of Immature CD4+CD8+ Thymocytes. The Journal of Experimental Medicine, 188, 1817-1830.
https://doi.org/10.1084/jem.188.10.1817 |
[44] | Rincon, M., Flavell, R.A. and Davis, R.J. (2001) Signal Transduction by MAP Kinases in T Lymphocytes. Oncogene, 20, 2490-2497. https://doi.org/10.1038/sj.onc.1204382 |
[45] | Choi, Y.H., Kim, G.Y. and Lee, H.H. (2014) Anti-Inflammatory Effects of Cordycepin in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages through Toll-Like Receptor 4-Mediated Suppression of Mitogen-Activated Protein Kinases and NF-κB Signaling Pathways. Drug Design, Development and Therapy, 8, 1941-1953.
https://doi.org/10.2147/DDDT.S71957 |
[46] | Hsiao, F.S.H., Cheng, Y.H., Wang, S.K., et al. (2018) Cordyceps militaris Hot Water Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in Porcine Alveolar Macrophages by Regulation of Mitogen-Activated Protein Kinase Signaling Pathway. Canadian Journal of Animal Science, 98, 44-52. |
[47] | Sen, R. and Baltimore, D. (1986) Inducibility of Kappa Immunoglobulin Enhancer-Binding Protein Nf-Kappa B by a Posttranslational Mechanism. Cell, 47, 921-928. https://doi.org/10.1016/0092-8674(86)90807-X |
[48] | Piette, J., Piret, B., Bonizzi, G., et al. (1997) Multiple Redox Regulation in NF-κB Transcription Factor Activation. Biological Chemistry, 378, 1237-1245. |
[49] | Hayden, M.S. and Ghosh, S. (2011) NF-kappa B in Immunobiology. Cell Research, 21, 223-244.
https://doi.org/10.1038/cr.2011.13 |
[50] | Vallabhapurapu, S. and Karin, M. (2009) Regulation and Function of NF-κB Transcription Factors in the Factors in the Immune System. Annual Review of Immunology, 27, 693-733.
https://doi.org/10.1146/annurev.immunol.021908.132641 |
[51] | Hayden, M.S. and Ghosh, S. (2012) NF-Kappa B, the First Quarter-Century: Remarkable Progress and Outstanding Questions. Genes & Development, 26, 203-234. https://doi.org/10.1101/gad.183434.111 |
[52] | 郭蕾, 骆艳妮, 马琪, 等. 虫草素对CLP诱导的脓毒症大鼠免疫调节作用及肝肺组织病理变化的影响[J]. 局解手术学杂志, 2018, 27(11): 783-788. |
[53] | Noh, E.M., Kim, J.S., Hur, H., et al. (2009) Cordycepin Inhibits IL-1β-Induced MMP-1 and MMP-3 Expression in Rheumatoid Arthritis Synovial Fifibroblasts. Rheumatology, 48, 45-48. https://doi.org/10.1093/rheumatology/ken417 |
[54] | Noh, E.M., Youn, H.J., Jung, S.H., et al. (2010) Cordycepin Inhibits TPA-Induced Matrix Metalloproteinase-9 Expression by Suppressing the MAPK/AP-1 Pathway in MCF-7 Human Breast Cancer Cells. International Journal of Molecular Medicine, 25, 255-260. https://doi.org/10.3892/ijmm_00000338 |
[55] | Lee, E.J., Kim, W.J. and Moon, S.K. (2010) Cordycepin Suppresses TNF-Alpha-Induced Invasion, Migration and Matrix Metalloproteinase-9 Expression in Human Bladder Cancer Cells. Phytotherapy Research, 24, 1755-1761.
https://doi.org/10.1002/ptr.3132 |
[56] | Lee, Y.R., Noh, E.M., Jeong, E.Y., et al. (2009) Cordycepin Inhibits UVB-Induced Matrix Metalloproteinase Expression by Suppressing the NF Kappa B Pathway in Human Dermal Fibroblasts. Experimental and Molecular Medicine, 41, 548-554. https://doi.org/10.3858/emm.2009.41.8.060 |
[57] | Ren, Z.H., Cui, J.H., Huo, Z.R., et al. (2012) Cordycepin Suppresses TNF-α-Induced NF-κB Activation by Reducing p65 Transcriptional Activity, Inhibiting IκBα Phosphorylation, and Blocking IKKγ Ubiquitination. International Immunopharmacology, 14, 698-703. https://doi.org/10.1016/j.intimp.2012.10.008 |