|
TopN成对相似度迁移的三元组跨模态检索
|
Abstract:
[1] | 欧卫华, 刘彬, 周永辉, 等. 跨模态检索研究综述[J]. 贵州师范大学学报: 自然科学版, 2018, 36(2): 114-120. |
[2] | Wang, K., Yin, Q., Wang, W., et al. (2016) A Comprehensive Survey on Cross-Modal Retrieval. arXiv:1607.06215. |
[3] | Hardoon, D.R., Szedmak, S. and Shawe-Taylor, J. (2004) Canonical Correlation Analysis: An Overview with Application to Learning Methods. Neural Computation, 16, 2639-2664. https://doi.org/10.1162/0899766042321814 |
[4] | Deng, C., Chen, Z., Liu, X., et al. (2018) Triplet-Based Deep Hashing Network for Cross-Modal Retrieval. IEEE Transactions on Image Processing, 27, 3893-3903. https://doi.org/10.1109/TIP.2018.2821921 |
[5] | Schroff, F., Kalenichenko, D. and Philbin, J. (2015) Facenet: A Unified Embedding for Face Recognition and Clustering. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 7-12 June 2015, 815-823. https://doi.org/10.1109/CVPR.2015.7298682 |
[6] | He, X. and Niyogi, P. (2004) Locality Preserving Projections. Proceedings of the 16th International Conference on Neural In-formation Processing Systems, Whistler, Columbia, 9-11 December 2003, 153-160. |
[7] | Zhang, W., Kang, P., Fang, X., et al. (2019) Joint Sparse Representation and Locality Preserving Projection for Feature Extraction. International Journal of Machine Learning and Cybernetics, 10, 1731-1745.
https://doi.org/10.1007/s13042-018-0849-y |
[8] | 康培培, 林泽航, 杨振国, 等. 成对相似度迁移哈希用于无监督跨模态检索[J]. 计算机应用研究, 2021, 38(10): 3025-3029. |
[9] | Zhu, Z., Li, Y. and Liang Y. (2018) Learning and Generalization in Overparameterized Neural Networks, Going beyond Two Layers. arXiv preprint arXiv:181104918. |
[10] | Pereira, J.C., Coviello, E., Doyle, G., et al. (2013) On the Role of Correlation and Abstraction in Cross-Modal Multimedia Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 521-535.
https://doi.org/10.1109/TPAMI.2013.142 |
[11] | Mikolov, T., Chen, K., Corrado, G., et al. (2013) Efficient Estima-tion of Word Representations in Vector Space. arXiv e-prints, arXiv:1301.3781. |
[12] | Rashtchian, C., Young, P., Hodosh, M., et al. (2010) Collecting Image Annotations Using Amazon’s Mechanical Turk. Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, Los Angeles, June 2010, 139-147. |
[13] | Peng, Y., Zhai, X., Zhao, Y., et al. (2015) Semi-Supervised Cross-Media Feature Learning with Unified Patch Graph Regularization. IEEE Transactions on Circuits and Systems for Video Technology, 26, 583-596.
https://doi.org/10.1109/TCSVT.2015.2400779 |
[14] | Blaschko, M.B. and Lampert, C.H. (2008) Correlational Spec-tral Clustering. Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 23-28 June 2008, 1-8.
https://doi.org/10.1109/CVPR.2008.4587353 |
[15] | Andrew, G., Arora, R., Bilmes, J., et al. (2013) Deep Canonical Correlation Analysis. Proceedings of the International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 28, Atlanta, 16-21 June 2013, 1247-1255. |
[16] | Zhang, D. and Li, W.-J. (2014) Large-Scale Supervised Multimodal Hashing with Semantic Correlation Maximization. Proceedings of the AAAI Conference on Artifi-cial Intelligence, Québec, 27-31 July 2014, 2177-2183. |
[17] | Zhai, X., Peng, Y. and Xiao, J. (2013) Learning Cross-Media Joint Representation with Sparse and Semisupervised Regularization. IEEE Transactions on Circuits and Systems for Video Technology, 24, 965-978.
https://doi.org/10.1109/TCSVT.2013.2276704 |
[18] | Wang, B., Yang, Y., Xu, X., et al. (2017) Adversarial Cross-Modal Retrieval. Proceedings of the Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, 23-27 October 2017, 154-162.
https://doi.org/10.1145/3123266.3123326 |
[19] | Cheng, Q. and Gu, X. (2021) Bridging Multimedia Heterogeneity Gap via Graph Representation Learning for Cross-Modal Retrieval. Neural Networks, 134, 143-162. https://doi.org/10.1016/j.neunet.2020.11.011 |