全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于凸二次规划的基金投资风格分析模型
The Fund Investment Style Analysis Model Based on Convex Quadratic Programming

DOI: 10.12677/AAM.2021.1010351, PP. 3343-3350

Keywords: 凸二次规划,基金投资风格分析,RBSA法,降维算法
Convex Quadratic Programming
, Fund Investment Style Analysis, RBSA Method, Dimension Reduction Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

简要分析了基金风格划分常用的基于收益时间序列的回归法(RBSA法)和基于持仓数据的分析法(PBSA法),重点讨论了RBSA方法,根据Sharpe的回归分析模型,解释RBSA方法不仅能合理构造基金业绩评价基准,还能客观展现基金经理的主动选择能力。作相关假设把回归模型转化为一个凸二次规划问题,利用最优化理论转化为求解局部极小值问题,并且介绍了一种降维算法,能有效快速地求解此类问题。
This paper briefly presents Portfolio-Based Style Analysis and Return-Based Style Analysis for fund investment and focuses on the latter. According to the regression model of Sharpe, merits of RBSA method have been explained, which can not only construct reasonable benchmark to evaluate fund performance, but also can show fund managers’ abilities objectively. The regression model has been turned into a convex quadratic programming based on some assumptions, so the relevant optimization theory could be used. A dimension reduction algorithm has been introduced to solve such problems quickly and effectively.

References

[1]  吕兆德. 投资基金风格分析体系之构建研究[J]. 现代财经, 2007, 27(2): 34-36+43.
[2]  Morning Star. New Style Box Methodology.
https://www.morningstar.com/
[3]  Sharpe, W.F. (1988) Determining a Fund’s Effective Asset Mix. Investment Management Review, 59-69.
[4]  Sharpe, W.F. (1992) Asset Allocation: Management Style and Performance Measurement. Journal of Portfolio Management, 18, 7-19.
https://doi.org/10.3905/jpm.1992.409394
[5]  曾晓洁, 黄蒿, 储国强. 基金投资风格于基金分类的实证研究[J]. 金融研究, 2004(3): 66-78.
[6]  Lehmann, B.N. and Modest, D.M. (1987) Mutual Fund Performance Evaluation: A Comparison of Benchmarks and Benchmark Comparisons. The Journal of Finance, 42, 233-265.
https://doi.org/10.1111/j.1540-6261.1987.tb02566.x
[7]  Chan, L.K.C., Chen, H.L. and Lakonishok, J. (2002) On Mutual Fund Investment Styles. Review of Financial Studies, 15, 1407-1437.
https://doi.org/10.1093/rfs/15.5.1407
[8]  袁亚湘, 孙文瑜. 最优化理论与方法[M]. 北京: 科学出版社, 1999.
[9]  胡毓达. 非线性规划[M]. 北京: 高等教育出版社, 1990.
[10]  童东付, 李泽民. 二次规划问题的降维算法[J]. 重庆建筑大学学报, 1999, 21(5): 64-68.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133