全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于移动网格的HLL格式求解浅水波方程
Solving Shallow Water Wave Equation with HLL Scheme Based on Moving Grid

DOI: 10.12677/AAM.2021.1010348, PP. 3317-3324

Keywords: 浅水波方程,HLL格式,移动网格法,Runge-Kutta法
Shallow Water Wave Equation
, HLL Scheme, Moving Grid Method, Runge-Kutta Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种基于移动网格的HLL格式来求解浅水波方程。移动网格法基于迭代过程,在每次迭代中利用等分布原理对网格进行重新分布,然后利用保守插值公式对其数值解进行更新,该方法的主要思想是保持每个重新分布步骤下的数值解的质量守恒。HLL格式是具有良好鲁棒性的数值通量,可消除红斑现象。时间方向采用三阶强稳定龙格–库塔方法进行推进,通过数值结果的对比发现基于移动网格的HLL格式具有分辨率高的良好特性。
In this paper, an HLL scheme based on moving grid is proposed to solve shallow water wave equations. Based on the iterative process, the moving mesh method redistributes the mesh in each iteration by using the equal distribution principle, and then updates its numerical solution by using the conservative interpolation formula, the main idea of this method is to preserve the mass conservation of the numerical solution under each redistribution step. HLL scheme is a numerical flux with good robustness and can eliminate the carbuncle. The time direction is advanced by the third- order strongly stable Runge-Kutta method, and the comparison of numerical results shows that the HLL scheme based on the moving grid has good resolution.

References

[1]  Harten, A. and Hyman, J.M. (1983) Self Adjusting Grid Methods for One-Dimensional Hyperbolic Conservation Laws. Journal of Computational Physics, 50, 235-269.
https://doi.org/10.1016/0021-9991(83)90066-9
[2]  Xu, X.H., and Ni, G.X. (2013) A High-Order Moving Mesh Kinetic Scheme Based on WENO Reconstruction for Compressible Flows. Chinese Journal of Computational Physics, 30, 509-514.
[3]  Han, E, Li, J.Q. and Tang, H.Z. (2010) An Adaptive GRP Scheme for Compressible Fluid Flows. Journal of Computational Physics, 229, 1448-1466.
https://doi.org/10.1016/j.jcp.2009.10.038
[4]  Tang, H.Z. and Tang, T. (2003) Adaptive Mesh Methods for One-and Two-Dimensional Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 41, 487-515.
https://doi.org/10.1137/S003614290138437X
[5]  Cheng, X.H., Nie, Y.F. and Cai, L. (2017) Entropy Stable Scheme Based on Moving Grid. Chinese Journal of Computational Physics, 34, 175-182.
[6]  王令, 郑素佩. 基于移动网格的熵稳定格式求解浅水波方程[J]. 水动力学研究与进展: A辑, 2020(2): 188-193.
[7]  郑素佩, 王令, 王苗苗. 求解二维浅水波方程的移动网格旋转通量法[J]. 应用数学和力学, 2020, 41(1): 42-53.
https://doi.org/10.21656/1000-0887.400124
[8]  Nishikawa, H. and Kitamura, K. (2008) Very Simple, Carbuncle-Free, Boundary-Layer-Resolving, Rotated-Hybrid Riemann Solvers. Journal of Computational Physics, 227, 2560-2581.
https://doi.org/10.1016/j.jcp.2007.11.003
[9]  Klingenberg, C., Kurganov, A., Liu, Y.L. and Zenk, M. (2020) Moving-Water Equilibria Preserving HLL-Type Schemes for the Shallow Water Equations. Communications in Mathematical Research, 36, 247-271.
https://doi.org/10.4208/cmr.2020-0013
[10]  贾豆, 郑素佩. 求解二维Euler方程的旋转通量混合格式[J]. 应用数学与力学, 2021, 42(2): 170-179.
https://doi.org/10.21656/1000-0887.410196
[11]  Thanh, M.D., Karim, M.F. and Ismail, A.I.M. (2008) Well-Balanced Scheme for Shallow Water Equations with Arbitrary Topography. International Journal of Dynamical Systems & Different Equations, 1, 196-204.
https://doi.org/10.1504/IJDSDE.2008.019681
[12]  Goetz, C.R., Balsara, D.S. and Dumbser, M. (2018) A Family of HLL-Type Solvers for the Generalized Riemann Problem. Computers & Fluids, 169, 201-212.
https://doi.org/10.1016/j.compfluid.2017.10.028
[13]  Gottlieb, S., Ketcheson, D.I. and Shu, C.W. (2009) High Order Strong Stability Preserving Time Discretization. Journal of Scientific Computing, 38, 251-289.
https://doi.org/10.1007/s10915-008-9239-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133